Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Sep 15;326(Pt 3):867–876. doi: 10.1042/bj3260867

Cytosolic phospholipase A2 and its mode of activation in human neutrophils by opsonized zymosan. Correlation between 42/44 kDa mitogen-activated protein kinase, cytosolic phospholipase A2 and NADPH oxidase.

I Hazan 1, R Dana 1, Y Granot 1, R Levy 1
PMCID: PMC1218744  PMID: 9307039

Abstract

The role of cytosolic phospholipase A2 (cPLA2) and its mode of activation by opsonized zymosan (OZ) was studied in human neutrophils in comparison with activation by PMA. The activation of cPLA2 by 1 mg/ml OZ or 50 ng/ml PMA is evidenced by its translocation to the membrane fractions on stimulation. This translocation is consistent with dithiothreitol (DTT)-resistant phospholipase A2 (PLA2) activity detected in the membranes of activated cells. Neutrophils stimulated by either OZ or PMA exhibited an immediate stimulation of extracellular-signal-regulated kinases (ERKs). The inhibition of ERKs, DTT-resistant PLA2 and NADPH oxidase activities by the MAP kinase kinase inhibitor PD-98059 indicates that ERKs mediate the activation of cPLA2 and NADPH oxidase stimulated by either OZ or PMA. The protein kinase C (PKC) inhibitor GF-109203X inhibited epidermal growth factor receptor peptide kinase activity, the release of [3H]arachidonic acid, DTT-resistant PLA2 activity and superoxide generation induced by PMA, but did not inhibit any of these activities induced by OZ. PKC activity was similarly inhibited by GF-109203X in membrane fractions separated from neutrophils stimulated by either PMA or OZ. In the presence of the tyrosine kinase inhibit orgenistein, ERKs, PLA2 and NADPH oxidase activities were inhibited in cells stimulated by OZ, whereas they were hardly affected in cells stimulated by PMA. The results suggest that the activation of cPLA2 by PMA or OZ is mediated by ERKs. Whereas PMA stimulates ERKs activity through a PKC-dependent pathway, signal transduction stimulated by OZ involves tyrosine kinase activity leading to activation of ERKs via a PKC-independent pathway.

Full Text

The Full Text of this article is available as a PDF (565.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackermann E. J., Kempner E. S., Dennis E. A. Ca(2+)-independent cytosolic phospholipase A2 from macrophage-like P388D1 cells. Isolation and characterization. J Biol Chem. 1994 Mar 25;269(12):9227–9233. [PubMed] [Google Scholar]
  2. Akiyama T., Ishida J., Nakagawa S., Ogawara H., Watanabe S., Itoh N., Shibuya M., Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem. 1987 Apr 25;262(12):5592–5595. [PubMed] [Google Scholar]
  3. Alessi D. R., Cuenda A., Cohen P., Dudley D. T., Saltiel A. R. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem. 1995 Nov 17;270(46):27489–27494. doi: 10.1074/jbc.270.46.27489. [DOI] [PubMed] [Google Scholar]
  4. Ambs P., Baccarini M., Fitzke E., Dieter P. Role of cytosolic phospholipase A2 in arachidonic acid release of rat-liver macrophages: regulation by Ca2+ and phosphorylation. Biochem J. 1995 Oct 1;311(Pt 1):189–195. doi: 10.1042/bj3110189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Axelrod J., Burch R. M., Jelsema C. L. Receptor-mediated activation of phospholipase A2 via GTP-binding proteins: arachidonic acid and its metabolites as second messengers. Trends Neurosci. 1988 Mar;11(3):117–123. doi: 10.1016/0166-2236(88)90157-9. [DOI] [PubMed] [Google Scholar]
  6. Baggiolini M., Kernen P., Deranleau D. A., Dewald B. Control of motility, exocytosis and the respiratory burst in human neutrophils. Biochem Soc Trans. 1991 Feb;19(1):55–59. doi: 10.1042/bst0190055. [DOI] [PubMed] [Google Scholar]
  7. Bauldry S. A., Wooten R. E., Bass D. A. Activation of cytosolic phospholipase A2 in permeabilized human neutrophils. Biochim Biophys Acta. 1996 Jan 19;1299(2):223–234. doi: 10.1016/0005-2760(95)00207-3. [DOI] [PubMed] [Google Scholar]
  8. Benestad H. B., Boyum A., Warhuus K. Haematopoietic defects of W/WV mice studied with the spleen colony, agar colony, and diffusion chamber techniques. Scand J Haematol. 1975 Oct;15(3):219–277. doi: 10.1111/j.1600-0609.1975.tb01077.x. [DOI] [PubMed] [Google Scholar]
  9. Blumer K. J., Johnson G. L. Diversity in function and regulation of MAP kinase pathways. Trends Biochem Sci. 1994 Jun;19(6):236–240. doi: 10.1016/0968-0004(94)90147-3. [DOI] [PubMed] [Google Scholar]
  10. Bromberg Y., Pick E. Unsaturated fatty acids as second messengers of superoxide generation by macrophages. Cell Immunol. 1983 Jul 15;79(2):240–252. doi: 10.1016/0008-8749(83)90067-9. [DOI] [PubMed] [Google Scholar]
  11. Buhl A. M., Avdi N., Worthen G. S., Johnson G. L. Mapping of the C5a receptor signal transduction network in human neutrophils. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9190–9194. doi: 10.1073/pnas.91.19.9190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Burgering B. M., Bos J. L. Regulation of Ras-mediated signalling: more than one way to skin a cat. Trends Biochem Sci. 1995 Jan;20(1):18–22. doi: 10.1016/s0968-0004(00)88944-6. [DOI] [PubMed] [Google Scholar]
  13. Clark J. D., Lin L. L., Kriz R. W., Ramesha C. S., Sultzman L. A., Lin A. Y., Milona N., Knopf J. L. A novel arachidonic acid-selective cytosolic PLA2 contains a Ca(2+)-dependent translocation domain with homology to PKC and GAP. Cell. 1991 Jun 14;65(6):1043–1051. doi: 10.1016/0092-8674(91)90556-e. [DOI] [PubMed] [Google Scholar]
  14. Clark J. D., Milona N., Knopf J. L. Purification of a 110-kilodalton cytosolic phospholipase A2 from the human monocytic cell line U937. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7708–7712. doi: 10.1073/pnas.87.19.7708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cook S. J., McCormick F. Inhibition by cAMP of Ras-dependent activation of Raf. Science. 1993 Nov 12;262(5136):1069–1072. doi: 10.1126/science.7694367. [DOI] [PubMed] [Google Scholar]
  16. Dana R., Malech H. L., Levy R. The requirement for phospholipase A2 for activation of the assembled NADPH oxidase in human neutrophils. Biochem J. 1994 Jan 1;297(Pt 1):217–223. doi: 10.1042/bj2970217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dang P. M., Hakim J., Périanin A. Immunochemical identification and translocation of protein kinase C zeta in human neutrophils. FEBS Lett. 1994 Aug 8;349(3):338–342. doi: 10.1016/0014-5793(94)00700-4. [DOI] [PubMed] [Google Scholar]
  18. Davis R. J. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem. 1993 Jul 15;268(20):14553–14556. [PubMed] [Google Scholar]
  19. Ding A., Sanchez E., Nathan C. F. Taxol shares the ability of bacterial lipopolysaccharide to induce tyrosine phosphorylation of microtubule-associated protein kinase. J Immunol. 1993 Nov 15;151(10):5596–5602. [PubMed] [Google Scholar]
  20. Dryden P., Duronio V., Martin L., Hudson A. T., Salari H. Inhibition of human neutrophil responses by alpha-cyano-3,4-dihydroxythiocinnamamide; a protein-tyrosine kinase inhibitor. Br J Pharmacol. 1992 Jul;106(3):656–664. doi: 10.1111/j.1476-5381.1992.tb14391.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Durstin M., Durstin S., Molski T. F., Becker E. L., Sha'afi R. I. Cytoplasmic phospholipase A2 translocates to membrane fraction in human neutrophils activated by stimuli that phosphorylate mitogen-activated protein kinase. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3142–3146. doi: 10.1073/pnas.91.8.3142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Dusi S., Donini M., Della Bianca V., Rossi F. Tyrosine phosphorylation of phospholipase C-gamma 2 is involved in the activation of phosphoinositide hydrolysis by Fc receptors in human neutrophils. Biochem Biophys Res Commun. 1994 Jun 30;201(3):1100–1108. doi: 10.1006/bbrc.1994.1819. [DOI] [PubMed] [Google Scholar]
  23. Fouda S. I., Molski T. F., Ashour M. S., Sha'afi R. I. Effect of lipopolysaccharide on mitogen-activated protein kinases and cytosolic phospholipase A2. Biochem J. 1995 Jun 15;308(Pt 3):815–822. doi: 10.1042/bj3080815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Gibson-Berry K. L., Whitin J. C., Cohen H. J. Modulation of the respiratory burst in human neutrophils by isoproterenol and dibutyryl cyclic AMP. J Neuroimmunol. 1993 Mar;43(1-2):59–68. doi: 10.1016/0165-5728(93)90075-a. [DOI] [PubMed] [Google Scholar]
  25. Gomez-Cambronero J., Colasanto J. M., Huang C. K., Sha'afi R. I. Direct stimulation by tyrosine phosphorylation of microtubule-associated protein (MAP) kinase activity by granulocyte-macrophage colony-stimulating factor in human neutrophils. Biochem J. 1993 Apr 1;291(Pt 1):211–217. doi: 10.1042/bj2910211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Greenberg S., Chang P., Silverstein S. C. Tyrosine phosphorylation of the gamma subunit of Fc gamma receptors, p72syk, and paxillin during Fc receptor-mediated phagocytosis in macrophages. J Biol Chem. 1994 Feb 4;269(5):3897–3902. [PubMed] [Google Scholar]
  27. Grinstein S., Furuya W. Chemoattractant-induced tyrosine phosphorylation and activation of microtubule-associated protein kinase in human neutrophils. J Biol Chem. 1992 Sep 5;267(25):18122–18125. [PubMed] [Google Scholar]
  28. Grinstein S., Furuya W. Receptor-mediated activation of electropermeabilized neutrophils. Evidence for a Ca2+- and protein kinase C-independent signaling pathway. J Biol Chem. 1988 Feb 5;263(4):1779–1783. [PubMed] [Google Scholar]
  29. Hamada F., Aoki M., Akiyama T., Toyoshima K. Association of immunoglobulin G Fc receptor II with Src-like protein-tyrosine kinase Fgr in neutrophils. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6305–6309. doi: 10.1073/pnas.90.13.6305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Hazen S. L., Hall C. R., Ford D. A., Gross R. W. Isolation of a human myocardial cytosolic phospholipase A2 isoform. Fast atom bombardment mass spectroscopic and reverse-phase high pressure liquid chromatography identification of choline and ethanolamine glycerophospholipid substrates. J Clin Invest. 1993 Jun;91(6):2513–2522. doi: 10.1172/JCI116487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Isakov N., Altman A. Human T lymphocyte activation by tumor promoters: role of protein kinase C. J Immunol. 1987 May 15;138(10):3100–3107. [PubMed] [Google Scholar]
  32. Joseph C. K., Byun H. S., Bittman R., Kolesnick R. N. Substrate recognition by ceramide-activated protein kinase. Evidence that kinase activity is proline-directed. J Biol Chem. 1993 Sep 25;268(27):20002–20006. [PubMed] [Google Scholar]
  33. Kameshita I., Fujisawa H. A sensitive method for detection of calmodulin-dependent protein kinase II activity in sodium dodecyl sulfate-polyacrylamide gel. Anal Biochem. 1989 Nov 15;183(1):139–143. doi: 10.1016/0003-2697(89)90181-4. [DOI] [PubMed] [Google Scholar]
  34. Kramer R. M., Jakubowski J. A., Deykin D. Hydrolysis of 1-alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine, a common precursor of platelet-activating factor and eicosanoids, by human platelet phospholipase A2. Biochim Biophys Acta. 1988 Apr 15;959(3):269–279. doi: 10.1016/0005-2760(88)90200-7. [DOI] [PubMed] [Google Scholar]
  35. Kramer R. M., Roberts E. F., Manetta J., Putnam J. E. The Ca2(+)-sensitive cytosolic phospholipase A2 is a 100-kDa protein in human monoblast U937 cells. J Biol Chem. 1991 Mar 15;266(8):5268–5272. [PubMed] [Google Scholar]
  36. Levy R., Malech H. L. Effect of 1,25-dihydroxyvitamin D3, lipopolysaccharide, or lipoteichoic acid on the expression of NADPH oxidase components in cultured human monocytes. J Immunol. 1991 Nov 1;147(9):3066–3071. [PubMed] [Google Scholar]
  37. Lin L. L., Wartmann M., Lin A. Y., Knopf J. L., Seth A., Davis R. J. cPLA2 is phosphorylated and activated by MAP kinase. Cell. 1993 Jan 29;72(2):269–278. doi: 10.1016/0092-8674(93)90666-e. [DOI] [PubMed] [Google Scholar]
  38. Lu D. J., Grinstein S. ATP and guanine nucleotide dependence of neutrophil activation. Evidence for the involvement of two distinct GTP-binding proteins. J Biol Chem. 1990 Aug 15;265(23):13721–13729. [PubMed] [Google Scholar]
  39. Maridonneau-Parini I., Tauber A. I. Activation of NADPH-oxidase by arachidonic acid involves phospholipase A2 in intact human neutrophils but not in the cell-free system. Biochem Biophys Res Commun. 1986 Aug 14;138(3):1099–1105. doi: 10.1016/s0006-291x(86)80395-3. [DOI] [PubMed] [Google Scholar]
  40. Marquardt B., Frith D., Stabel S. Signalling from TPA to MAP kinase requires protein kinase C, raf and MEK: reconstitution of the signalling pathway in vitro. Oncogene. 1994 Nov;9(11):3213–3218. [PubMed] [Google Scholar]
  41. Marshall L. A., Roshak A. Coexistence of two biochemically distinct phospholipase A2 activities in human platelet, monocyte, and neutrophil. Biochem Cell Biol. 1993 Jul-Aug;71(7-8):331–339. doi: 10.1139/o93-050. [DOI] [PubMed] [Google Scholar]
  42. Martiny-Baron G., Kazanietz M. G., Mischak H., Blumberg P. M., Kochs G., Hug H., Marmé D., Schächtele C. Selective inhibition of protein kinase C isozymes by the indolocarbazole Gö 6976. J Biol Chem. 1993 May 5;268(13):9194–9197. [PubMed] [Google Scholar]
  43. Mayer R. J., Marshall L. A. New insights on mammalian phospholipase A2(s); comparison of arachidonoyl-selective and -nonselective enzymes. FASEB J. 1993 Feb 1;7(2):339–348. doi: 10.1096/fasebj.7.2.8440410. [DOI] [PubMed] [Google Scholar]
  44. McPhail L. C., Snyderman R. Activation of the respiratory burst enzyme in human polymorphonuclear leukocytes by chemoattractants and other soluble stimuli. Evidence that the same oxidase is activated by different transductional mechanisms. J Clin Invest. 1983 Jul;72(1):192–200. doi: 10.1172/JCI110957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Muid R. E., Twomey B., Dale M. M. The effect of inhibition of both diacylglycerol metabolism and phospholipase A2 activity on superoxide generation by human neutrophils. FEBS Lett. 1988 Jul 4;234(1):235–240. doi: 10.1016/0014-5793(88)81342-5. [DOI] [PubMed] [Google Scholar]
  46. Naccache P. H., Gilbert C., Caon A. C., Gaudry M., Huang C. K., Bonak V. A., Umezawa K., McColl S. R. Selective inhibition of human neutrophil functional responsiveness by erbstatin, an inhibitor of tyrosine protein kinase. Blood. 1990 Nov 15;76(10):2098–2104. [PubMed] [Google Scholar]
  47. Nahas N., Molski T. F., Fernandez G. A., Sha'afi R. I. Tyrosine phosphorylation and activation of a new mitogen-activated protein (MAP)-kinase cascade in human neutrophils stimulated with various agonists. Biochem J. 1996 Aug 15;318(Pt 1):247–253. doi: 10.1042/bj3180247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Nahas N., Waterman W. H., Sha'afi R. I. Granulocyte-macrophage colony-stimulating factor (GM-CSF) promotes phosphorylation and an increase in the activity of cytosolic phospholipase A2 in human neutrophils. Biochem J. 1996 Jan 15;313(Pt 2):503–508. doi: 10.1042/bj3130503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Nakashima S., Suganuma A., Sato M., Tohmatsu T., Nozawa Y. Mechanism of arachidonic acid liberation in platelet-activating factor-stimulated human polymorphonuclear neutrophils. J Immunol. 1989 Aug 15;143(4):1295–1302. [PubMed] [Google Scholar]
  50. Naraba H., Imai Y., Kudo I., Nakagawa Y., Oh-ishi S. Activation of phospholipase A2 and acylation of lysophospholipids: the major regulators for platelet activating factor production in rat neutrophils. J Biochem. 1995 Aug;118(2):442–447. doi: 10.1093/oxfordjournals.jbchem.a124927. [DOI] [PubMed] [Google Scholar]
  51. Nick J. A., Avdi N. J., Young S. K., Knall C., Gerwins P., Johnson G. L., Worthen G. S. Common and distinct intracellular signaling pathways in human neutrophils utilized by platelet activating factor and FMLP. J Clin Invest. 1997 Mar 1;99(5):975–986. doi: 10.1172/JCI119263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Okuda K., Sanghera J. S., Pelech S. L., Kanakura Y., Hallek M., Griffin J. D., Druker B. J. Granulocyte-macrophage colony-stimulating factor, interleukin-3, and steel factor induce rapid tyrosine phosphorylation of p42 and p44 MAP kinase. Blood. 1992 Jun 1;79(11):2880–2887. [PubMed] [Google Scholar]
  53. Qiu Z. H., Leslie C. C. Protein kinase C-dependent and -independent pathways of mitogen-activated protein kinase activation in macrophages by stimuli that activate phospholipase A2. J Biol Chem. 1994 Jul 29;269(30):19480–19487. [PubMed] [Google Scholar]
  54. Qiu Z. H., de Carvalho M. S., Leslie C. C. Regulation of phospholipase A2 activation by phosphorylation in mouse peritoneal macrophages. J Biol Chem. 1993 Nov 15;268(32):24506–24513. [PubMed] [Google Scholar]
  55. Rosen H., Law S. K. The leukocyte cell surface receptor(s) for the iC3b product of complement. Curr Top Microbiol Immunol. 1990;153:99–122. doi: 10.1007/978-3-642-74977-3_6. [DOI] [PubMed] [Google Scholar]
  56. Rubinek T., Levy R. Arachidonic acid increases the activity of the assembled NADPH oxidase in cytoplasmic membranes and endosomes. Biochim Biophys Acta. 1993 Mar 10;1176(1-2):51–58. doi: 10.1016/0167-4889(93)90176-p. [DOI] [PubMed] [Google Scholar]
  57. Sakata A., Ida E., Tominaga M., Onoue K. Arachidonic acid acts as an intracellular activator of NADPH-oxidase in Fc gamma receptor-mediated superoxide generation in macrophages. J Immunol. 1987 Jun 15;138(12):4353–4359. [PubMed] [Google Scholar]
  58. Sanghera J. S., Weinstein S. L., Aluwalia M., Girn J., Pelech S. L. Activation of multiple proline-directed kinases by bacterial lipopolysaccharide in murine macrophages. J Immunol. 1996 Jun 1;156(11):4457–4465. [PubMed] [Google Scholar]
  59. Seger R., Krebs E. G. The MAPK signaling cascade. FASEB J. 1995 Jun;9(9):726–735. [PubMed] [Google Scholar]
  60. Seilhamer J. J., Pruzanski W., Vadas P., Plant S., Miller J. A., Kloss J., Johnson L. K. Cloning and recombinant expression of phospholipase A2 present in rheumatoid arthritic synovial fluid. J Biol Chem. 1989 Apr 5;264(10):5335–5338. [PubMed] [Google Scholar]
  61. Smallwood J. I., Malawista S. E. Protein kinase C isoforms in human neutrophil cytoplasts. J Leukoc Biol. 1992 Jan;51(1):84–92. doi: 10.1002/jlb.51.1.84. [DOI] [PubMed] [Google Scholar]
  62. Suga K., Kawasaki T., Blank M. L., Snyder F. An arachidonoyl (polyenoic)-specific phospholipase A2 activity regulates the synthesis of platelet-activating factor in granulocytic HL-60 cells. J Biol Chem. 1990 Jul 25;265(21):12363–12371. [PubMed] [Google Scholar]
  63. Tarsi-Tsuk D., Levy R. Stimulation of the respiratory burst in peripheral blood monocytes by lipoteichoic acid. The involvement of calcium ions and phospholipase A2. J Immunol. 1990 Apr 1;144(7):2665–2670. [PubMed] [Google Scholar]
  64. Thompson H. L., Marshall C. J., Saklatvala J. Characterization of two different forms of mitogen-activated protein kinase kinase induced in polymorphonuclear leukocytes following stimulation by N-formylmethionyl-leucyl-phenylalanine or granulocyte-macrophage colony-stimulating factor. J Biol Chem. 1994 Apr 1;269(13):9486–9492. [PubMed] [Google Scholar]
  65. Torres M., Hall F. L., O'Neill K. Stimulation of human neutrophils with formyl-methionyl-leucyl-phenylalanine induces tyrosine phosphorylation and activation of two distinct mitogen-activated protein-kinases. J Immunol. 1993 Feb 15;150(4):1563–1577. [PubMed] [Google Scholar]
  66. Toullec D., Pianetti P., Coste H., Bellevergue P., Grand-Perret T., Ajakane M., Baudet V., Boissin P., Boursier E., Loriolle F. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem. 1991 Aug 25;266(24):15771–15781. [PubMed] [Google Scholar]
  67. Wang A. V., Scholl P. R., Geha R. S. Physical and functional association of the high affinity immunoglobulin G receptor (Fc gamma RI) with the kinases Hck and Lyn. J Exp Med. 1994 Sep 1;180(3):1165–1170. doi: 10.1084/jem.180.3.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Waterman W. H., Molski T. F., Huang C. K., Adams J. L., Sha'afi R. I. Tumour necrosis factor-alpha-induced phosphorylation and activation of cytosolic phospholipase A2 are abrogated by an inhibitor of the p38 mitogen-activated protein kinase cascade in human neutrophils. Biochem J. 1996 Oct 1;319(Pt 1):17–20. doi: 10.1042/bj3190017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Wijkander J., O'Flaherty J. T., Nixon A. B., Wykle R. L. 5-Lipoxygenase products modulate the activity of the 85-kDa phospholipase A2 in human neutrophils. J Biol Chem. 1995 Nov 3;270(44):26543–26549. doi: 10.1074/jbc.270.44.26543. [DOI] [PubMed] [Google Scholar]
  70. Wilkinson S. E., Parker P. J., Nixon J. S. Isoenzyme specificity of bisindolylmaleimides, selective inhibitors of protein kinase C. Biochem J. 1993 Sep 1;294(Pt 2):335–337. doi: 10.1042/bj2940335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Yasui K., Yamazaki M., Miyabayashi M., Tsuno T., Komiyama A. Signal transduction pathway in human polymorphonuclear leukocytes for chemotaxis induced by a chemotactic factor. Distinct from the pathway for superoxide anion production. J Immunol. 1994 Jun 15;152(12):5922–5929. [PubMed] [Google Scholar]
  72. Zhang Y. Y., Deems R. A., Dennis E. A. Lysophospholipases I and II from P388D1 macrophage-like cell line. Methods Enzymol. 1991;197:456–468. doi: 10.1016/0076-6879(91)97171-t. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES