Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Sep 15;326(Pt 3):911–917. doi: 10.1042/bj3260911

Glycosylation differences between pig gastric mucin populations: a comparative study of the neutral oligosaccharides using mass spectrometry.

N G Karlsson 1, H Nordman 1, H Karlsson 1, I Carlstedt 1, G C Hansson 1
PMCID: PMC1218750  PMID: 9307045

Abstract

Five mucin populations were isolated from the cardiac region,corpus and antrum of pig gastric mucosa. The released neutral oligosaccharides were permethylated and analysed using high-temperature gas chromatography-mass spectrometry (GC-MS) as well as matrix-assisted laser-desorption mass spectrometry (MALDI-MS). Thirty different oligosaccharides with up to six monosaccharide residues were characterized using both techniques, but the presence of an additional 49 structures was suggested on the basis of their molecular mass by MALDI-MS. Oligosaccharides based on core-1 (Galbeta1-3GalNAcalpha1-) and core-2 [Galbeta1-3(GlcNAcbeta1-6)GalNAcalpha1-] structures were widely distributed, whereas core-3 structures (GlcNAcbeta1-3GalNAcalpha1-) were present only in mucins from the cardiac region and corpus, and core-4 structures [GlcNAcbeta1-3(GlcNAcbeta1-6)GalNAcalpha1-] were present exclusively in mucins from the cardiac region. Furthermore the oligosaccharides from one of the mucins from the corpus were significantly longer than those from the other populations. The results illustrate vast structural diversity, but the relative abundances show only a few dominating structures, suggesting that many oligosaccharides may be quite rare in pig gastric mucins. Well-defined mucin populations with distinctly different glycosylation can thus be identified in pig stomach, suggesting that glycosylation of the large secreted mucins from this tissue is not a random event.

Full Text

The Full Text of this article is available as a PDF (738.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen A., Flemström G., Garner A., Kivilaakso E. Gastroduodenal mucosal protection. Physiol Rev. 1993 Oct;73(4):823–857. doi: 10.1152/physrev.1993.73.4.823. [DOI] [PubMed] [Google Scholar]
  2. Asker N., Baeckström D., Axelsson M. A., Carlstedt I., Hansson G. C. The human MUC2 mucin apoprotein appears to dimerize before O-glycosylation and shares epitopes with the 'insoluble' mucin of rat small intestine. Biochem J. 1995 Jun 15;308(Pt 3):873–880. doi: 10.1042/bj3080873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carlstedt I., Herrmann A., Hovenberg H., Lindell G., Nordman H., Wickström C., Davies J. R. 'Soluble' and 'insoluble' mucins--identification of distinct populations. Biochem Soc Trans. 1995 Nov;23(4):845–851. doi: 10.1042/bst0230845. [DOI] [PubMed] [Google Scholar]
  4. Carlstedt I., Herrmann A., Karlsson H., Sheehan J., Fransson L. A., Hansson G. C. Characterization of two different glycosylated domains from the insoluble mucin complex of rat small intestine. J Biol Chem. 1993 Sep 5;268(25):18771–18781. [PubMed] [Google Scholar]
  5. De Bolós C., Garrido M., Real F. X. MUC6 apomucin shows a distinct normal tissue distribution that correlates with Lewis antigen expression in the human stomach. Gastroenterology. 1995 Sep;109(3):723–734. doi: 10.1016/0016-5085(95)90379-8. [DOI] [PubMed] [Google Scholar]
  6. Derevitskaya V. A., Arbatsky N. P., Kochetkov N. K. The structure of carbohydrate chains of blood-group substance. Isolation and elucidation of the structure of higher oligosaccharides from blood-group substance H. Eur J Biochem. 1978 May 16;86(2):423–437. doi: 10.1111/j.1432-1033.1978.tb12325.x. [DOI] [PubMed] [Google Scholar]
  7. Gum J. R., Jr, Hicks J. W., Toribara N. W., Siddiki B., Kim Y. S. Molecular cloning of human intestinal mucin (MUC2) cDNA. Identification of the amino terminus and overall sequence similarity to prepro-von Willebrand factor. J Biol Chem. 1994 Jan 28;269(4):2440–2446. [PubMed] [Google Scholar]
  8. Hanisch F. G., Chai W., Rosankiewicz J. R., Lawson A. M., Stoll M. S., Feizi T. Core-typing of O-linked glycans from human gastric mucins. Lack of evidence for the occurrence of the core sequence Gal1-6GalNAc. Eur J Biochem. 1993 Oct 15;217(2):645–655. doi: 10.1111/j.1432-1033.1993.tb18288.x. [DOI] [PubMed] [Google Scholar]
  9. Hansson G. C., Karlsson H. Gas chromatography and gas chromatography-mass spectrometry of glycoprotein oligosaccharides. Methods Mol Biol. 1993;14:47–54. doi: 10.1385/0-89603-226-4:47. [DOI] [PubMed] [Google Scholar]
  10. Ho S. B., Roberton A. M., Shekels L. L., Lyftogt C. T., Niehans G. A., Toribara N. W. Expression cloning of gastric mucin complementary DNA and localization of mucin gene expression. Gastroenterology. 1995 Sep;109(3):735–747. doi: 10.1016/0016-5085(95)90380-1. [DOI] [PubMed] [Google Scholar]
  11. Jentoft N. Why are proteins O-glycosylated? Trends Biochem Sci. 1990 Aug;15(8):291–294. doi: 10.1016/0968-0004(90)90014-3. [DOI] [PubMed] [Google Scholar]
  12. Karlsson N. G., Hansson G. C. Analysis of monosaccharide composition of mucin oligosaccharide alditols by high-performance anion-exchange chromatography. Anal Biochem. 1995 Jan 20;224(2):538–541. doi: 10.1006/abio.1995.1084. [DOI] [PubMed] [Google Scholar]
  13. Karlsson N. G., Karlsson H., Hansson G. C. Strategy for the investigation of O-linked oligosaccharides from mucins based on the separation into neutral, sialic acid- and sulfate-containing species. Glycoconj J. 1995 Feb;12(1):69–76. doi: 10.1007/BF00731871. [DOI] [PubMed] [Google Scholar]
  14. Kochetkov N. K., Derevitskaya V. A., Arbatsky N. P. The structure of pentasaccharides and hexasaccharides from blood group substance H. Eur J Biochem. 1976 Aug 1;67(1):129–136. doi: 10.1111/j.1432-1033.1976.tb10641.x. [DOI] [PubMed] [Google Scholar]
  15. Nordman H., Davies J. R., Herrmann A., Karlsson N. G., Hansson G. C., Carlstedt I. Mucus glycoproteins from pig gastric mucosa: identification ofdifferent mucin populations from the surface epithelium. Biochem J. 1997 Sep 15;326(Pt 3):903–910. doi: 10.1042/bj3260903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ohara S., Ishihara K., Hotta K. Regional differences in pig gastric mucins. Comp Biochem Physiol B. 1993 Sep;106(1):153–158. doi: 10.1016/0305-0491(93)90021-v. [DOI] [PubMed] [Google Scholar]
  17. Ota H., Katsuyama T., Ishii K., Nakayama J., Shiozawa T., Tsukahara Y. A dual staining method for identifying mucins of different gastric epithelial mucous cells. Histochem J. 1991 Jan;23(1):22–28. doi: 10.1007/BF01886504. [DOI] [PubMed] [Google Scholar]
  18. Strous G. J., Dekker J. Mucin-type glycoproteins. Crit Rev Biochem Mol Biol. 1992;27(1-2):57–92. doi: 10.3109/10409239209082559. [DOI] [PubMed] [Google Scholar]
  19. Van Halbeek H., Dorland L., Vliegenthart J. F., Kochetkov N. K., Arbatsky N. P., Derevitskaya V. A. Characterization of the primary structure and the microheterogeneity of the carbohydrate chains of porcine blood-group H substance by 500-MHz 1H-NMR spectroscopy. Eur J Biochem. 1982 Sep;127(1):21–29. doi: 10.1111/j.1432-1033.1982.tb06832.x. [DOI] [PubMed] [Google Scholar]
  20. Wattel W., Geuze J. J., de Rooij D. G. Ultrastructural and carbohydrate histochemical studies on the differentiation and renewal of mucous cells in the rat gastric fundus. Cell Tissue Res. 1977 Jan 24;176(4):445–462. doi: 10.1007/BF00231401. [DOI] [PubMed] [Google Scholar]
  21. Zenteno E., Vázquez L., Chávez R., Córdoba F., Wieruszeski J. M., Montreuil J., Debray H. Specificity of the isolectins from the plant cactus Machaerocereus eruca for oligosaccharides from porcine stomach mucin. Glycoconj J. 1995 Oct;12(5):699–706. doi: 10.1007/BF00731267. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES