Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Sep 15;326(Pt 3):919–927. doi: 10.1042/bj3260919

Targeting of the HIV-1 long terminal repeat with chromomycin potentiates the inhibitory effects of a triplex-forming oligonucleotide on Sp1-DNA interactions and in vitro transcription.

N Bianchi 1, C Rutigliano 1, M Passadore 1, M Tomassetti 1, L Pippo 1, C Mischiati 1, G Feriotto 1, R Gambari 1
PMCID: PMC1218751  PMID: 9307046

Abstract

We have studied the effects of chromomycin and of a triple-helix-forming oligonucleotide (TFO) that recognizes Sp1 binding sites on protein-DNA interactions and HIV-1 transcription. Molecular interactions between chromomycin, the Sp1 TFO and target DNA sequences were studied by gel retardation, triplex affinity capture using streptavidin-coated magnetic beads and biosensor technology. We also determined whether chromomycin and a TFO recognizing the Sp1 binding sites of the HIV-1 long terminal repeat (LTR) inhibit the activity of restriction enzyme HaeIII, which recognizes a sequence (5'-GGCC-3') located within these Sp1 binding sites. The effects of chromomycin and the TFO on the interaction between nuclear proteins or purified Sp1 and a double-stranded oligonucleotide containing the Sp1 binding sites of the HIV-1 LTR were studied by gel retardation. The effects of both chromomycin and TFO on transcription were studied by using an HIV-1 LTR-directed in vitro transcription system. Our results indicate that low concentrations of chromomycin potentiate the effects of the Sp1 TFO in inhibiting protein-DNA interactions and HIV-1-LTR-directed transcription. In addition, low concentrations of chromomycin do not affect binding of the TFO to target DNA molecules. The results presented here support the hypothesis that both DNA binding drugs and TFOs can be considered as sequence-selective modifiers of DNA-protein interactions, possibly leading to specific alterations of biological functions. In particular, the combined use of chromomycin and TFOs recognizing Sp1 binding sites could be employed in order to abolish the biological functions of promoters (such as the HIV-1 LTR) whose activity is potentiated by interactions with the promoter-specific transcription factor Sp1.

Full Text

The Full Text of this article is available as a PDF (499.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bates P. J., Dosanjh H. S., Kumar S., Jenkins T. C., Laughton C. A., Neidle S. Detection and kinetic studies of triplex formation by oligodeoxynucleotides using real-time biomolecular interaction analysis (BIA). Nucleic Acids Res. 1995 Sep 25;23(18):3627–3632. doi: 10.1093/nar/23.18.3627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beal P. A., Dervan P. B. Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science. 1991 Mar 15;251(4999):1360–1363. doi: 10.1126/science.2003222. [DOI] [PubMed] [Google Scholar]
  3. Berg O. G., von Hippel P. H. Selection of DNA binding sites by regulatory proteins. Trends Biochem Sci. 1988 Jun;13(6):207–211. doi: 10.1016/0968-0004(88)90085-0. [DOI] [PubMed] [Google Scholar]
  4. Bianchi N., Passadore M., Rutigliano C., Feriotto G., Mischiati C., Gambari R. Targeting of the Sp1 binding sites of HIV-1 long terminal repeat with chromomycin. Disruption of nuclear factor.DNA complexes and inhibition of in vitro transcription. Biochem Pharmacol. 1996 Nov 22;52(10):1489–1498. doi: 10.1016/s0006-2952(96)00510-2. [DOI] [PubMed] [Google Scholar]
  5. Broggini M., Ponti M., Ottolenghi S., D'Incalci M., Mongelli N., Mantovani R. Distamycins inhibit the binding of OTF-1 and NFE-1 transfactors to their conserved DNA elements. Nucleic Acids Res. 1989 Feb 11;17(3):1051–1059. doi: 10.1093/nar/17.3.1051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Churchill M. E., Hayes J. J., Tullius T. D. Detection of drug binding to DNA by hydroxyl radical footprinting. Relationship of distamycin binding sites to DNA structure and positioned nucleosomes on 5S RNA genes of Xenopus. Biochemistry. 1990 Jun 26;29(25):6043–6050. doi: 10.1021/bi00477a023. [DOI] [PubMed] [Google Scholar]
  7. Cooney M., Czernuszewicz G., Postel E. H., Flint S. J., Hogan M. E. Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vitro. Science. 1988 Jul 22;241(4864):456–459. doi: 10.1126/science.3293213. [DOI] [PubMed] [Google Scholar]
  8. Dervan P. B. Design of sequence-specific DNA-binding molecules. Science. 1986 Apr 25;232(4749):464–471. doi: 10.1126/science.2421408. [DOI] [PubMed] [Google Scholar]
  9. Dorn A., Affolter M., Müller M., Gehring W. J., Leupin W. Distamycin-induced inhibition of homeodomain-DNA complexes. EMBO J. 1992 Jan;11(1):279–286. doi: 10.1002/j.1460-2075.1992.tb05050.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Durland R. H., Kessler D. J., Gunnell S., Duvic M., Pettitt B. M., Hogan M. E. Binding of triple helix forming oligonucleotides to sites in gene promoters. Biochemistry. 1991 Sep 24;30(38):9246–9255. doi: 10.1021/bi00102a017. [DOI] [PubMed] [Google Scholar]
  11. Ebbinghaus S. W., Gee J. E., Rodu B., Mayfield C. A., Sanders G., Miller D. M. Triplex formation inhibits HER-2/neu transcription in vitro. J Clin Invest. 1993 Nov;92(5):2433–2439. doi: 10.1172/JCI116850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Faisst S., Meyer S. Compilation of vertebrate-encoded transcription factors. Nucleic Acids Res. 1992 Jan 11;20(1):3–26. doi: 10.1093/nar/20.1.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Feriotto G., Mischiati C., Bianchi N., Passadore M., Gambari R. Binding of distamycin and chromomycin to human immunodeficiency type 1 virus DNA: a non-radioactive automated footprinting study. Eur J Pharmacol. 1995 Jul 18;290(2):85–93. doi: 10.1016/0922-4106(95)90020-9. [DOI] [PubMed] [Google Scholar]
  14. Feriotto G., Mischiati C., Gambari R. Sequence-specific recognition of the HIV-1 long terminal repeat by distamycin: a DNAase I footprinting study. Biochem J. 1994 Apr 15;299(Pt 2):451–458. doi: 10.1042/bj2990451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gambari R., Barbieri R., Nastruzzi C., Chiorboli V., Feriotto G., Natali P. G., Giacomini P., Arcamone F. Distamycin inhibits the binding of a nuclear factor to the -278/-256 upstream sequence of the human HLA-DR alpha gene. Biochem Pharmacol. 1991 Feb 15;41(4):497–502. doi: 10.1016/0006-2952(91)90620-k. [DOI] [PubMed] [Google Scholar]
  16. Gambari R., Nastruzzi C. DNA-binding activity and biological effects of aromatic polyamidines. Biochem Pharmacol. 1994 Feb 11;47(4):599–610. doi: 10.1016/0006-2952(94)90121-x. [DOI] [PubMed] [Google Scholar]
  17. Gao X. L., Patel D. J. Antitumour drug-DNA interactions: NMR studies of echinomycin and chromomycin complexes. Q Rev Biophys. 1989 May;22(2):93–138. doi: 10.1017/s0033583500003814. [DOI] [PubMed] [Google Scholar]
  18. Gao X. L., Patel D. J. Solution structure of the chromomycin-DNA complex. Biochemistry. 1989 Jan 24;28(2):751–762. doi: 10.1021/bi00428a051. [DOI] [PubMed] [Google Scholar]
  19. Gaynor R. Cellular transcription factors involved in the regulation of HIV-1 gene expression. AIDS. 1992 Apr;6(4):347–363. doi: 10.1097/00002030-199204000-00001. [DOI] [PubMed] [Google Scholar]
  20. Greene W. C. Regulation of HIV-1 gene expression. Annu Rev Immunol. 1990;8:453–475. doi: 10.1146/annurev.iy.08.040190.002321. [DOI] [PubMed] [Google Scholar]
  21. Gualberto A., Baldwin A. S., Jr p53 and Sp1 interact and cooperate in the tumor necrosis factor-induced transcriptional activation of the HIV-1 long terminal repeat. J Biol Chem. 1995 Aug 25;270(34):19680–19683. doi: 10.1074/jbc.270.34.19680. [DOI] [PubMed] [Google Scholar]
  22. Hanvey J. C., Shimizu M., Wells R. D. Site-specific inhibition of EcoRI restriction/modification enzymes by a DNA triple helix. Nucleic Acids Res. 1990 Jan 11;18(1):157–161. doi: 10.1093/nar/18.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ito T., Smith C. L., Cantor C. R. Sequence-specific DNA purification by triplex affinity capture. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):495–498. doi: 10.1073/pnas.89.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jönsson U., Fägerstam L., Ivarsson B., Johnsson B., Karlsson R., Lundh K., Löfås S., Persson B., Roos H., Rönnberg I. Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. Biotechniques. 1991 Nov;11(5):620–627. [PubMed] [Google Scholar]
  25. Kohwi Y., Kohwi-Shigematsu T. Magnesium ion-dependent triple-helix structure formed by homopurine-homopyrimidine sequences in supercoiled plasmid DNA. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3781–3785. doi: 10.1073/pnas.85.11.3781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Laughton C. A., Jenkins T. C., Fox K. R., Neidle S. Interaction of berenil with the tyrT DNA sequence studied by footprinting and molecular modelling. Implications for the design of sequence-specific DNA recognition agents. Nucleic Acids Res. 1990 Aug 11;18(15):4479–4488. doi: 10.1093/nar/18.15.4479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lee J. S., Latimer L. J., Hampel K. J. Coralyne binds tightly to both T.A.T- and C.G.C(+)-containing DNA triplexes. Biochemistry. 1993 Jun 1;32(21):5591–5597. doi: 10.1021/bi00072a014. [DOI] [PubMed] [Google Scholar]
  28. Lewin B. Oncogenic conversion by regulatory changes in transcription factors. Cell. 1991 Jan 25;64(2):303–312. doi: 10.1016/0092-8674(91)90640-k. [DOI] [PubMed] [Google Scholar]
  29. Li Y., Mak G., Franza B. R., Jr In vitro study of functional involvement of Sp1, NF-kappa B/Rel, and AP1 in phorbol 12-myristate 13-acetate-mediated HIV-1 long terminal repeat activation. J Biol Chem. 1994 Dec 2;269(48):30616–30619. [PubMed] [Google Scholar]
  30. Maher L. J., 3rd, Wold B., Dervan P. B. Inhibition of DNA binding proteins by oligonucleotide-directed triple helix formation. Science. 1989 Aug 18;245(4919):725–730. doi: 10.1126/science.2549631. [DOI] [PubMed] [Google Scholar]
  31. Maher L. J., 3rd, Wold B., Dervan P. B. Inhibition of DNA binding proteins by oligonucleotide-directed triple helix formation. Science. 1989 Aug 18;245(4919):725–730. doi: 10.1126/science.2549631. [DOI] [PubMed] [Google Scholar]
  32. Malmqvist M. Biospecific interaction analysis using biosensor technology. Nature. 1993 Jan 14;361(6408):186–187. doi: 10.1038/361186a0. [DOI] [PubMed] [Google Scholar]
  33. Mayfield C., Ebbinghaus S., Gee J., Jones D., Rodu B., Squibb M., Miller D. Triplex formation by the human Ha-ras promoter inhibits Sp1 binding and in vitro transcription. J Biol Chem. 1994 Jul 8;269(27):18232–18238. [PubMed] [Google Scholar]
  34. McShan W. M., Rossen R. D., Laughter A. H., Trial J., Kessler D. J., Zendegui J. G., Hogan M. E., Orson F. M. Inhibition of transcription of HIV-1 in infected human cells by oligodeoxynucleotides designed to form DNA triple helices. J Biol Chem. 1992 Mar 15;267(8):5712–5721. [PubMed] [Google Scholar]
  35. Mergny J. L., Duval-Valentin G., Nguyen C. H., Perrouault L., Faucon B., Rougée M., Montenay-Garestier T., Bisagni E., Hélène C. Triple helix-specific ligands. Science. 1992 Jun 19;256(5064):1681–1684. doi: 10.1126/science.256.5064.1681. [DOI] [PubMed] [Google Scholar]
  36. Miller D. M., Polansky D. A., Thomas S. D., Ray R., Campbell V. W., Sanchez J., Koller C. A. Mithramycin selectively inhibits transcription of G-C containing DNA. Am J Med Sci. 1987 Nov;294(5):388–394. doi: 10.1097/00000441-198711000-00015. [DOI] [PubMed] [Google Scholar]
  37. Mitchell P. J., Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science. 1989 Jul 28;245(4916):371–378. doi: 10.1126/science.2667136. [DOI] [PubMed] [Google Scholar]
  38. Nilsson P., Persson B., Uhlén M., Nygren P. A. Real-time monitoring of DNA manipulations using biosensor technology. Anal Biochem. 1995 Jan 1;224(1):400–408. doi: 10.1006/abio.1995.1057. [DOI] [PubMed] [Google Scholar]
  39. Orson F. M., Thomas D. W., McShan W. M., Kessler D. J., Hogan M. E. Oligonucleotide inhibition of IL2R alpha mRNA transcription by promoter region collinear triplex formation in lymphocytes. Nucleic Acids Res. 1991 Jun 25;19(12):3435–3441. doi: 10.1093/nar/19.12.3435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Passadore M., Bianchi N., Feriotto G., Mischiati C., Giacomini P., Piva R., Gambari R. Differential effects of distamycin analogues on amplification of human gene sequences by polymerase-chain reaction. Biochem J. 1995 Jun 1;308(Pt 2):513–519. doi: 10.1042/bj3080513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Pilch D. S., Breslauer K. J. Ligand-induced formation of nucleic acid triple helices. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9332–9336. doi: 10.1073/pnas.91.20.9332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Postel E. H., Flint S. J., Kessler D. J., Hogan M. E. Evidence that a triplex-forming oligodeoxyribonucleotide binds to the c-myc promoter in HeLa cells, thereby reducing c-myc mRNA levels. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8227–8231. doi: 10.1073/pnas.88.18.8227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ray R., Snyder R. C., Thomas S., Koller C. A., Miller D. M. Mithramycin blocks protein binding and function of the SV40 early promoter. J Clin Invest. 1989 Jun;83(6):2003–2007. doi: 10.1172/JCI114110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  45. Scanlon K. J., Ohta Y., Ishida H., Kijima H., Ohkawa T., Kaminski A., Tsai J., Horng G., Kashani-Sabet M. Oligonucleotide-mediated modulation of mammalian gene expression. FASEB J. 1995 Oct;9(13):1288–1296. doi: 10.1096/fasebj.9.13.7557018. [DOI] [PubMed] [Google Scholar]
  46. Scaria P. V., Shafer R. H. Binding of ethidium bromide to a DNA triple helix. Evidence for intercalation. J Biol Chem. 1991 Mar 25;266(9):5417–5423. [PubMed] [Google Scholar]
  47. Snyder R. C., Ray R., Blume S., Miller D. M. Mithramycin blocks transcriptional initiation of the c-myc P1 and P2 promoters. Biochemistry. 1991 Apr 30;30(17):4290–4297. doi: 10.1021/bi00231a027. [DOI] [PubMed] [Google Scholar]
  48. Stonehouse T. J., Fox K. R. DNase I footprinting of triple helix formation at polypurine tracts by acridine-linked oligopyrimidines: stringency, structural changes and interaction with minor groove binding ligands. Biochim Biophys Acta. 1994 Aug 2;1218(3):322–330. doi: 10.1016/0167-4781(94)90184-8. [DOI] [PubMed] [Google Scholar]
  49. Suñ C., García-Blanco M. A. Sp1 transcription factor is required for in vitro basal and Tat-activated transcription from the human immunodeficiency virus type 1 long terminal repeat. J Virol. 1995 Oct;69(10):6572–6576. doi: 10.1128/jvi.69.10.6572-6576.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Takabatake T., Asada K., Uchimura Y., Ohdate M., Kusukawa N. The use of purine-rich oligonucleotides in triplex-mediated DNA isolation and generation of unidirectional deletions. Nucleic Acids Res. 1992 Nov 11;20(21):5853–5854. doi: 10.1093/nar/20.21.5853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Vaishnav Y. N., Wong-Staal F. The biochemistry of AIDS. Annu Rev Biochem. 1991;60:577–630. doi: 10.1146/annurev.bi.60.070191.003045. [DOI] [PubMed] [Google Scholar]
  52. Van Dyke M. W., Dervan P. B. Chromomycin, mithramycin, and olivomycin binding sites on heterogeneous deoxyribonucleic acid. Footprinting with (methidiumpropyl-EDTA)iron(II). Biochemistry. 1983 May 10;22(10):2373–2377. doi: 10.1021/bi00279a011. [DOI] [PubMed] [Google Scholar]
  53. Vigneswaran N., Mayfield C. A., Rodu B., James R., Kim H. G., Miller D. M. Influence of GC and AT specific DNA minor groove binding drugs on intermolecular triplex formation in the human c-Ki-ras promoter. Biochemistry. 1996 Jan 30;35(4):1106–1114. doi: 10.1021/bi951562b. [DOI] [PubMed] [Google Scholar]
  54. Weis L., Reinberg D. Transcription by RNA polymerase II: initiator-directed formation of transcription-competent complexes. FASEB J. 1992 Nov;6(14):3300–3309. doi: 10.1096/fasebj.6.14.1426767. [DOI] [PubMed] [Google Scholar]
  55. Welch J. J., Rauscher F. J., 3rd, Beerman T. A. Targeting DNA-binding drugs to sequence-specific transcription factor.DNA complexes. Differential effects of intercalating and minor groove binding drugs. J Biol Chem. 1994 Dec 9;269(49):31051–31058. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES