Abstract
Key factors that mediate vascular smooth muscle cell proliferation and migration are platelet-derived growth factor (PDGF) and thrombospondin 1 (TSP1). We now report that PDGFBB bound tightly and specifically to TSP1, that this interaction was markedly dependent on the disulphide bond arrangement in TSP1, and that binding of PDGFBB to TSP1 did not preclude PDGFBB from binding to its receptor on rat aortic vascular smooth-muscle cells. At physiologic ionic strength and pH, PDGFBB bound to Ca2+-depleted TSP1 with a dissociation constant of 11 +/- 2 nM and to Ca2+-replete TSP1 with a dissociation constant of 32 +/- 5 nM. Binding was specific, as both soluble TSP1 and unlabelled PDGFBB competed for binding of iodinated PDGFBB to immobilized TSP1, whereas other platelet alpha-granule proteins did not compete. The tertiary structure of TSP1 is regulated by intramolecular disulphide interchange; we found that catalysis of disulphide interchange in TSP1 by protein disulphide isomerase ablated the binding of PDGFBB. The interaction of PDGFBB with TSP1 was weakened by increasing salt concentration and essentially ablated at 0.65 ionic strength; it was inhibited by heparin with a half-maximal effect at 20 i.u./ml, implying that the binding was mediated largely by ionic interactions. An anti TSP1 monoclonal antibody decreased the binding of iodinated PDGFBB to PDGF receptor on rat aortic vascular smooth-muscle cells by 37 +/- 2%, whereas platelet TSP1 non-competitively inhibited binding of iodinated PDGFBB. Uncomplexed PDGFBB bound to PDGF receptor with an affinity 5 +/- 2 times that of PDGFBB-TSP1 complexes. These results suggest that TSP1 might assist in the targeting of PDGF to its receptor on vascular smooth-muscle cells.
Full Text
The Full Text of this article is available as a PDF (390.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bornstein P. Diversity of function is inherent in matricellular proteins: an appraisal of thrombospondin 1. J Cell Biol. 1995 Aug;130(3):503–506. doi: 10.1083/jcb.130.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bornstein P., Sage E. H. Thrombospondins. Methods Enzymol. 1994;245:62–85. doi: 10.1016/0076-6879(94)45006-4. [DOI] [PubMed] [Google Scholar]
- Bowen-Pope D. F., Ross R. Methods for studying the platelet-derived growth factor receptor. Methods Enzymol. 1985;109:69–100. doi: 10.1016/0076-6879(85)09078-4. [DOI] [PubMed] [Google Scholar]
- Bowen-Pope D. F., Ross R. Platelet-derived growth factor. II. Specific binding to cultured cells. J Biol Chem. 1982 May 10;257(9):5161–5171. [PubMed] [Google Scholar]
- Chen K., Detwiler T. C., Essex D. W. Characterization of protein disulphide isomerase released from activated platelets. Br J Haematol. 1995 Jun;90(2):425–431. doi: 10.1111/j.1365-2141.1995.tb05169.x. [DOI] [PubMed] [Google Scholar]
- Clezardin P., Frappart L., Clerget M., Pechoux C., Delmas P. D. Expression of thrombospondin (TSP1) and its receptors (CD36 and CD51) in normal, hyperplastic, and neoplastic human breast. Cancer Res. 1993 Mar 15;53(6):1421–1430. [PubMed] [Google Scholar]
- Dixit V. M., Galvin N. J., O'Rourke K. M., Frazier W. A. Monoclonal antibodies that recognize calcium-dependent structures of human thrombospondin. Characterization and mapping of their epitopes. J Biol Chem. 1986 Feb 5;261(4):1962–1968. [PubMed] [Google Scholar]
- Essex D. W., Chen K., Swiatkowska M. Localization of protein disulfide isomerase to the external surface of the platelet plasma membrane. Blood. 1995 Sep 15;86(6):2168–2173. [PubMed] [Google Scholar]
- Framson P., Bornstein P. A serum response element and a binding site for NF-Y mediate the serum response of the human thrombospondin 1 gene. J Biol Chem. 1993 Mar 5;268(7):4989–4996. [PubMed] [Google Scholar]
- Heldin C. H. Structural and functional studies on platelet-derived growth factor. EMBO J. 1992 Dec;11(12):4251–4259. doi: 10.1002/j.1460-2075.1992.tb05523.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hogg P. J., Owensby D. A., Chesterman C. N. Thrombospondin 1 is a tight-binding competitive inhibitor of neutrophil cathepsin G. Determination of the kinetic mechanism of inhibition and localization of cathepsin G binding to the thrombospondin 1 type 3 repeats. J Biol Chem. 1993 Oct 15;268(29):21811–21818. [PubMed] [Google Scholar]
- Hogg P. J., Owensby D. A., Mosher D. F., Misenheimer T. M., Chesterman C. N. Thrombospondin is a tight-binding competitive inhibitor of neutrophil elastase. J Biol Chem. 1993 Apr 5;268(10):7139–7146. [PubMed] [Google Scholar]
- Hogg P. J. Thrombospondin 1 as an enzyme inhibitor. Thromb Haemost. 1994 Dec;72(6):787–792. [PubMed] [Google Scholar]
- Hogg P. J., Winzor D. J. Quantitative affinity chromatography: further developments in the analysis of experimental results from column chromatography and partition equilibrium studies. Arch Biochem Biophys. 1984 Oct;234(1):55–60. doi: 10.1016/0003-9861(84)90323-0. [DOI] [PubMed] [Google Scholar]
- Hotchkiss K. A., Chesterman C. N., Hogg P. J. Catalysis of disulfide isomerization in thrombospondin 1 by protein disulfide isomerase. Biochemistry. 1996 Jul 30;35(30):9761–9767. doi: 10.1021/bi9603938. [DOI] [PubMed] [Google Scholar]
- Iruela-Arispe M. L., Liska D. J., Sage E. H., Bornstein P. Differential expression of thrombospondin 1, 2, and 3 during murine development. Dev Dyn. 1993 May;197(1):40–56. doi: 10.1002/aja.1001970105. [DOI] [PubMed] [Google Scholar]
- Jaffe E. A., Ruggiero J. T., Leung L. K., Doyle M. J., McKeown-Longo P. J., Mosher D. F. Cultured human fibroblasts synthesize and secrete thrombospondin and incorporate it into extracellular matrix. Proc Natl Acad Sci U S A. 1983 Feb;80(4):998–1002. doi: 10.1073/pnas.80.4.998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khachigian L. M., Chesterman C. N. Platelet-derived growth factor and alternative splicing: a review. Pathology. 1992 Oct;24(4):280–290. doi: 10.3109/00313029209068882. [DOI] [PubMed] [Google Scholar]
- Lahav J. The functions of thrombospondin and its involvement in physiology and pathophysiology. Biochim Biophys Acta. 1993 Aug 4;1182(1):1–14. doi: 10.1016/0925-4439(93)90146-r. [DOI] [PubMed] [Google Scholar]
- Li W. X., Howard R. J., Leung L. L. Identification of SVTCG in thrombospondin as the conformation-dependent, high affinity binding site for its receptor, CD36. J Biol Chem. 1993 Aug 5;268(22):16179–16184. [PubMed] [Google Scholar]
- Little P. J., Cragoe E. J., Jr, Bobik A. Na-H exchange is a major pathway for Na influx in rat vascular smooth muscle. Am J Physiol. 1986 Nov;251(5 Pt 1):C707–C712. doi: 10.1152/ajpcell.1986.251.5.C707. [DOI] [PubMed] [Google Scholar]
- Majack R. A., Cook S. C., Bornstein P. Platelet-derived growth factor and heparin-like glycosaminoglycans regulate thrombospondin synthesis and deposition in the matrix by smooth muscle cells. J Cell Biol. 1985 Sep;101(3):1059–1070. doi: 10.1083/jcb.101.3.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Majack R. A., Goodman L. V., Dixit V. M. Cell surface thrombospondin is functionally essential for vascular smooth muscle cell proliferation. J Cell Biol. 1988 Feb;106(2):415–422. doi: 10.1083/jcb.106.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthias L. J., Gotis-Graham I., Underwood P. A., McNeil H. P., Hogg P. J. Identification of monoclonal antibodies that recognize different disulfide bonded forms of thrombospondin 1. Biochim Biophys Acta. 1996 Sep 5;1296(2):138–144. doi: 10.1016/0167-4838(96)00060-x. [DOI] [PubMed] [Google Scholar]
- McKeown-Longo P. J., Hanning R., Mosher D. F. Binding and degradation of platelet thrombospondin by cultured fibroblasts. J Cell Biol. 1984 Jan;98(1):22–28. doi: 10.1083/jcb.98.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Misenheimer T. M., Mosher D. F. Calcium ion binding to thrombospondin 1. J Biol Chem. 1995 Jan 27;270(4):1729–1733. doi: 10.1074/jbc.270.4.1729. [DOI] [PubMed] [Google Scholar]
- Mosher D. F., Doyle M. J., Jaffe E. A. Synthesis and secretion of thrombospondin by cultured human endothelial cells. J Cell Biol. 1982 May;93(2):343–348. doi: 10.1083/jcb.93.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy-Ullrich J. E., Mosher D. F. Localization of thrombospondin in clots formed in situ. Blood. 1985 Nov;66(5):1098–1104. [PubMed] [Google Scholar]
- Murphy-Ullrich J. E., Schultz-Cherry S., Hök M. Transforming growth factor-beta complexes with thrombospondin. Mol Biol Cell. 1992 Feb;3(2):181–188. doi: 10.1091/mbc.3.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nichol L. W., Ward L. D., Winzor D. J. Multivalency of the partitioning species in quantitative affinity chromatography. Evaluation of the site-binding constant for the aldolase-phosphate interaction from studies with cellulose phosphate as the affinity matrix. Biochemistry. 1981 Aug 18;20(17):4856–4860. doi: 10.1021/bi00520a008. [DOI] [PubMed] [Google Scholar]
- O'Shea K. S., Liu L. H., Kinnunen L. H., Dixit V. M. Role of the extracellular matrix protein thrombospondin in the early development of the mouse embryo. J Cell Biol. 1990 Dec;111(6 Pt 1):2713–2723. doi: 10.1083/jcb.111.6.2713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olson S. T., Bock P. E., Sheffer R. Quantitative evaluation of solution equilibrium binding interactions by affinity partitioning: application to specific and nonspecific protein-heparin interactions. Arch Biochem Biophys. 1991 May 1;286(2):533–545. doi: 10.1016/0003-9861(91)90076-u. [DOI] [PubMed] [Google Scholar]
- Porath J., Carlsson J., Olsson I., Belfrage G. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature. 1975 Dec 18;258(5536):598–599. doi: 10.1038/258598a0. [DOI] [PubMed] [Google Scholar]
- Raines E. W., Bowen-Pope D. F., Ross R. Plasma binding proteins for platelet-derived growth factor that inhibit its binding to cell-surface receptors. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3424–3428. doi: 10.1073/pnas.81.11.3424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raines E. W., Lane T. F., Iruela-Arispe M. L., Ross R., Sage E. H. The extracellular glycoprotein SPARC interacts with platelet-derived growth factor (PDGF)-AB and -BB and inhibits the binding of PDGF to its receptors. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1281–1285. doi: 10.1073/pnas.89.4.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raugi G. J., Mullen J. S., Bark D. H., Okada T., Mayberg M. R. Thrombospondin deposition in rat carotid artery injury. Am J Pathol. 1990 Jul;137(1):179–185. [PMC free article] [PubMed] [Google Scholar]
- Reed M. J., Puolakkainen P., Lane T. F., Dickerson D., Bornstein P., Sage E. H. Differential expression of SPARC and thrombospondin 1 in wound repair: immunolocalization and in situ hybridization. J Histochem Cytochem. 1993 Oct;41(10):1467–1477. doi: 10.1177/41.10.8245406. [DOI] [PubMed] [Google Scholar]
- Ross R. Platelet-derived growth factor. Annu Rev Med. 1987;38:71–79. doi: 10.1146/annurev.me.38.020187.000443. [DOI] [PubMed] [Google Scholar]
- Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
- Schlessinger J., Lax I., Lemmon M. Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors? Cell. 1995 Nov 3;83(3):357–360. doi: 10.1016/0092-8674(95)90112-4. [DOI] [PubMed] [Google Scholar]
- Speziale M. V., Detwiler T. C. Free thiols of platelet thrombospondin. Evidence for disulfide isomerization. J Biol Chem. 1990 Oct 15;265(29):17859–17867. [PubMed] [Google Scholar]
- Sun X., Skorstengaard K., Mosher D. F. Disulfides modulate RGD-inhibitable cell adhesive activity of thrombospondin. J Cell Biol. 1992 Aug;118(3):693–701. doi: 10.1083/jcb.118.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Underwood P. A., Steele J. G., Dalton B. A., Bennett F. A. Solid-phase monoclonal antibodies. A novel method of directing the function of biologically active molecules by presenting a specific orientation. J Immunol Methods. 1990 Feb 20;127(1):91–101. doi: 10.1016/0022-1759(90)90344-u. [DOI] [PubMed] [Google Scholar]
- Wight T. N., Raugi G. J., Mumby S. M., Bornstein P. Light microscopic immunolocation of thrombospondin in human tissues. J Histochem Cytochem. 1985 Apr;33(4):295–302. doi: 10.1177/33.4.3884704. [DOI] [PubMed] [Google Scholar]
- Yabkowitz R., Dixit V. M. Human carcinoma cells bind thrombospondin through a Mr 80,000/105,000 receptor. Cancer Res. 1991 Jul 15;51(14):3648–3656. [PubMed] [Google Scholar]
- Yabkowitz R., Mansfield P. J., Ryan U. S., Suchard S. J. Thrombospondin mediates migration and potentiates platelet-derived growth factor-dependent migration of calf pulmonary artery smooth muscle cells. J Cell Physiol. 1993 Oct;157(1):24–32. doi: 10.1002/jcp.1041570104. [DOI] [PubMed] [Google Scholar]
