Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Oct 1;327(Pt 1):17–21. doi: 10.1042/bj3270017

A novel procedure for the efficient purification of the cystic fibrosis transmembrane conductance regulator (CFTR).

M Ramjeesingh 1, C Li 1, E Garami 1, L J Huan 1, M Hewryk 1, Y Wang 1, K Galley 1, C E Bear 1
PMCID: PMC1218756  PMID: 9355728

Abstract

This report describes a novel, single-step strategy for the purification of the cystic fibrosis transmembrane conductance regulator from Sf9 cells, which will facilitate studies of the structure-function relationships of this clinically important molecule. The new method combines the use of the novel detergent sodium pentadecafluoro-octanoate with metal-affinity chromatography to produce a high yield of purified protein which can be functionally reconstituted as a chloride channel and an ATPase.

Full Text

The Full Text of this article is available as a PDF (383.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. P., Berger H. A., Rich D. P., Gregory R. J., Smith A. E., Welsh M. J. Nucleoside triphosphates are required to open the CFTR chloride channel. Cell. 1991 Nov 15;67(4):775–784. doi: 10.1016/0092-8674(91)90072-7. [DOI] [PubMed] [Google Scholar]
  2. Baukrowitz T., Hwang T. C., Nairn A. C., Gadsby D. C. Coupling of CFTR Cl- channel gating to an ATP hydrolysis cycle. Neuron. 1994 Mar;12(3):473–482. doi: 10.1016/0896-6273(94)90206-2. [DOI] [PubMed] [Google Scholar]
  3. Bear C. E., Li C. H., Kartner N., Bridges R. J., Jensen T. J., Ramjeesingh M., Riordan J. R. Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell. 1992 Feb 21;68(4):809–818. doi: 10.1016/0092-8674(92)90155-6. [DOI] [PubMed] [Google Scholar]
  4. Garty H., Rudy B., Karlish S. J. A simple and sensitive procedure for measuring isotope fluxes through ion-specific channels in heterogenous populations of membrane vesicles. J Biol Chem. 1983 Nov 10;258(21):13094–13099. [PubMed] [Google Scholar]
  5. Goldberg A. F., Miller C. Solubilization and functional reconstitution of a chloride channel from Torpedo californica electroplax. J Membr Biol. 1991 Dec;124(3):199–206. doi: 10.1007/BF01994354. [DOI] [PubMed] [Google Scholar]
  6. Gunderson K. L., Kopito R. R. Conformational states of CFTR associated with channel gating: the role ATP binding and hydrolysis. Cell. 1995 Jul 28;82(2):231–239. doi: 10.1016/0092-8674(95)90310-0. [DOI] [PubMed] [Google Scholar]
  7. Kartner N., Hanrahan J. W., Jensen T. J., Naismith A. L., Sun S. Z., Ackerley C. A., Reyes E. F., Tsui L. C., Rommens J. M., Bear C. E. Expression of the cystic fibrosis gene in non-epithelial invertebrate cells produces a regulated anion conductance. Cell. 1991 Feb 22;64(4):681–691. doi: 10.1016/0092-8674(91)90498-n. [DOI] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Li C., Ramjeesingh M., Bear C. E. Purified cystic fibrosis transmembrane conductance regulator (CFTR) does not function as an ATP channel. J Biol Chem. 1996 May 17;271(20):11623–11626. doi: 10.1074/jbc.271.20.11623. [DOI] [PubMed] [Google Scholar]
  10. Li C., Ramjeesingh M., Wang W., Garami E., Hewryk M., Lee D., Rommens J. M., Galley K., Bear C. E. ATPase activity of the cystic fibrosis transmembrane conductance regulator. J Biol Chem. 1996 Nov 8;271(45):28463–28468. doi: 10.1074/jbc.271.45.28463. [DOI] [PubMed] [Google Scholar]
  11. Loo T. W., Clarke D. M. Rapid purification of human P-glycoprotein mutants expressed transiently in HEK 293 cells by nickel-chelate chromatography and characterization of their drug-stimulated ATPase activities. J Biol Chem. 1995 Sep 15;270(37):21449–21452. doi: 10.1074/jbc.270.37.21449. [DOI] [PubMed] [Google Scholar]
  12. O'Riordan C. R., Erickson A., Bear C., Li C., Manavalan P., Wang K. X., Marshall J., Scheule R. K., McPherson J. M., Cheng S. H. Purification and characterization of recombinant cystic fibrosis transmembrane conductance regulator from Chinese hamster ovary and insect cells. J Biol Chem. 1995 Jul 14;270(28):17033–17043. doi: 10.1074/jbc.270.28.17033. [DOI] [PubMed] [Google Scholar]
  13. Rosenberg M. F., Callaghan R., Ford R. C., Higgins C. F. Structure of the multidrug resistance P-glycoprotein to 2.5 nm resolution determined by electron microscopy and image analysis. J Biol Chem. 1997 Apr 18;272(16):10685–10694. doi: 10.1074/jbc.272.16.10685. [DOI] [PubMed] [Google Scholar]
  14. Shepherd F. H., Holzenburg A. The potential of fluorinated surfactants in membrane biochemistry. Anal Biochem. 1995 Jan 1;224(1):21–27. doi: 10.1006/abio.1995.1003. [DOI] [PubMed] [Google Scholar]
  15. Tabcharani J. A., Low W., Elie D., Hanrahan J. W. Low-conductance chloride channel activated by cAMP in the epithelial cell line T84. FEBS Lett. 1990 Sep 17;270(1-2):157–164. doi: 10.1016/0014-5793(90)81257-o. [DOI] [PubMed] [Google Scholar]
  16. Winter M. C., Sheppard D. N., Carson M. R., Welsh M. J. Effect of ATP concentration on CFTR Cl- channels: a kinetic analysis of channel regulation. Biophys J. 1994 May;66(5):1398–1403. doi: 10.1016/S0006-3495(94)80930-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Woodbury D. J., Miller C. Nystatin-induced liposome fusion. A versatile approach to ion channel reconstitution into planar bilayers. Biophys J. 1990 Oct;58(4):833–839. doi: 10.1016/S0006-3495(90)82429-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES