Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Oct 1;327(Pt 1):37–43. doi: 10.1042/bj3270037

Angiotensin-converting enzyme secretase is inhibited by zinc metalloprotease inhibitors and requires its substrate to be inserted in a lipid bilayer.

S Parvathy 1, S Y Oppong 1, E H Karran 1, D R Buckle 1, A J Turner 1, N M Hooper 1
PMCID: PMC1218760  PMID: 9355732

Abstract

Mammalian angiotensin-converting enzyme (ACE; EC 3.4.15.1) is one of several proteins that exist in both membrane-bound and soluble forms as a result of a post-translational proteolytic processing event. For ACE we have previously identified a metalloprotease (secretase) responsible for this proteolytic cleavage. The effect of a range of structurally related zinc metalloprotease inhibitors on the activity of the secretase has been examined. Batimastat (BB94) was the most potent inhibitor of the secretase in pig kidney microvillar membranes, displaying an IC50 of 0.47 microM, whereas TAPI-2 was slightly less potent (IC50 18 microM). Removal of the thienothiomethyl substituent adjacent to the hydroxamic acid moiety or the substitution of the P2' substituent decreased the inhibitory potency of batimastat towards the secretase. Several other non-hydroxamate-based collagenase inhibitors were without inhibitory effect on the secretase, indicating that ACE secretase is a novel zinc metalloprotease that is realted to, but distinct from, the matrix metalloproteases. The full-length amphipathic form of ACE was labelled selectively with 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine in the membrane-spanning hydrophobic region. Although trypsin was able to cleave the hydrophobic anchoring domain from the bulk of the protein, there was no cleavage of full-length ACE by a Triton X-100-solubilized pig kidney secretase preparation when the substrate was in detergent solution. In contrast, the Triton X-100-solubilized secretase preparation released ACE from pig intestinal microvillar membranes, which lack endogenous secretase activity, and cleaved the purified amphipathic form of ACE when it was incorporated into artificial lipid vesicles. Thus the secretase has an absolute requirement for its substrate to be inserted in a lipid bilayer, a factor that might have implications for the development of cell-free assays for other membrane protein secretases. ACE secretase could be solubilized from the membrane with Triton-X-100 and CHAPS, but not with n-octyl beta-D-glucopyranoside. Furthermore trypsin could release the secretase from the membrane, implying that like its substrate, ACE, it too is a stalked integral membrane protein.

Full Text

The Full Text of this article is available as a PDF (334.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beldent V., Michaud A., Bonnefoy C., Chauvet M. T., Corvol P. Cell surface localization of proteolysis of human endothelial angiotensin I-converting enzyme. Effect of the amino-terminal domain in the solubilization process. J Biol Chem. 1995 Dec 1;270(48):28962–28969. doi: 10.1074/jbc.270.48.28962. [DOI] [PubMed] [Google Scholar]
  2. Beldent V., Michaud A., Wei L., Chauvet M. T., Corvol P. Proteolytic release of human angiotensin-converting enzyme. Localization of the cleavage site. J Biol Chem. 1993 Dec 15;268(35):26428–26434. [PubMed] [Google Scholar]
  3. Beszant B., Bird J., Gaster L. M., Harper G. P., Hughes I., Karran E. H., Markwell R. E., Miles-Williams A. J., Smith S. A. Synthesis of novel modified dipeptide inhibitors of human collagenase: beta-mercapto carboxylic acid derivatives. J Med Chem. 1993 Dec 10;36(25):4030–4039. doi: 10.1021/jm00077a006. [DOI] [PubMed] [Google Scholar]
  4. Bird J., De Mello R. C., Harper G. P., Hunter D. J., Karran E. H., Markwell R. E., Miles-Williams A. J., Rahman S. S., Ward R. W. Synthesis of novel N-phosphonoalkyl dipeptide inhibitors of human collagenase. J Med Chem. 1994 Jan 7;37(1):158–169. doi: 10.1021/jm00027a020. [DOI] [PubMed] [Google Scholar]
  5. Booth A. G., Kenny A. J. A rapid method for the preparation of microvilli from rabbit kidney. Biochem J. 1974 Sep;142(3):575–581. doi: 10.1042/bj1420575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  7. Brunner J., Semenza G. Selective labeling of the hydrophobic core of membranes with 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine, a carbene-generating reagent. Biochemistry. 1981 Dec 8;20(25):7174–7182. doi: 10.1021/bi00528a019. [DOI] [PubMed] [Google Scholar]
  8. Cawston T. E., Barrett A. J. A rapid and reproducible assay for collagenase using [1-14C]acetylated collagen. Anal Biochem. 1979 Nov 1;99(2):340–345. doi: 10.1016/s0003-2697(79)80017-2. [DOI] [PubMed] [Google Scholar]
  9. Cheng H. J., Flanagan J. G. Transmembrane kit ligand cleavage does not require a signal in the cytoplasmic domain and occurs at a site dependent on spacing from the membrane. Mol Biol Cell. 1994 Sep;5(9):943–953. doi: 10.1091/mbc.5.9.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Citron M., Teplow D. B., Selkoe D. J. Generation of amyloid beta protein from its precursor is sequence specific. Neuron. 1995 Mar;14(3):661–670. doi: 10.1016/0896-6273(95)90323-2. [DOI] [PubMed] [Google Scholar]
  11. Deng P., Rettenmier C. W., Pattengale P. K. Structural requirements for the ectodomain cleavage of human cell surface macrophage colony-stimulating factor. J Biol Chem. 1996 Jul 5;271(27):16338–16343. doi: 10.1074/jbc.271.27.16338. [DOI] [PubMed] [Google Scholar]
  12. Ehlers M. R., Riordan J. F. Angiotensin-converting enzyme: new concepts concerning its biological role. Biochemistry. 1989 Jun 27;28(13):5311–5318. doi: 10.1021/bi00439a001. [DOI] [PubMed] [Google Scholar]
  13. Ehlers M. R., Riordan J. F. Membrane proteins with soluble counterparts: role of proteolysis in the release of transmembrane proteins. Biochemistry. 1991 Oct 22;30(42):10065–10074. doi: 10.1021/bi00106a001. [DOI] [PubMed] [Google Scholar]
  14. Erdös E. G., Skidgel R. A. The angiotensin I-converting enzyme. Lab Invest. 1987 Apr;56(4):345–348. [PubMed] [Google Scholar]
  15. Hooper N. M. Angiotensin converting enzyme: implications from molecular biology for its physiological functions. Int J Biochem. 1991;23(7-8):641–647. doi: 10.1016/0020-711x(91)90032-i. [DOI] [PubMed] [Google Scholar]
  16. Hooper N. M., Karran E. H., Turner A. J. Membrane protein secretases. Biochem J. 1997 Jan 15;321(Pt 2):265–279. doi: 10.1042/bj3210265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hooper N. M., Keen J., Pappin D. J., Turner A. J. Pig kidney angiotensin converting enzyme. Purification and characterization of amphipathic and hydrophilic forms of the enzyme establishes C-terminal anchorage to the plasma membrane. Biochem J. 1987 Oct 1;247(1):85–93. doi: 10.1042/bj2470085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hooper N. M., Turner A. J. Isolation of two differentially glycosylated forms of peptidyl-dipeptidase A (angiotensin converting enzyme) from pig brain: a re-evaluation of their role in neuropeptide metabolism. Biochem J. 1987 Feb 1;241(3):625–633. doi: 10.1042/bj2410625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kessler M., Acuto O., Storelli C., Murer H., Müller M., Semenza G. A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush border membranes. Their use in investigating some properties of D-glucose and choline transport systems. Biochim Biophys Acta. 1978 Jan 4;506(1):136–154. doi: 10.1016/0005-2736(78)90440-6. [DOI] [PubMed] [Google Scholar]
  20. Lanzillo J. J., Fanburg B. L. Angiotensin I converting enzyme from human plasma. Biochemistry. 1977 Dec 13;16(25):5491–5495. doi: 10.1021/bi00644a015. [DOI] [PubMed] [Google Scholar]
  21. Oppong S. Y., Hooper N. M. Characterization of a secretase activity which releases angiotensin-converting enzyme from the membrane. Biochem J. 1993 Jun 1;292(Pt 2):597–603. doi: 10.1042/bj2920597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ramchandran R., Sen G. C., Misono K., Sen I. Regulated cleavage-secretion of the membrane-bound angiotensin-converting enzyme. J Biol Chem. 1994 Jan 21;269(3):2125–2130. [PubMed] [Google Scholar]
  23. Ramchandran R., Sen I. Cleavage processing of angiotensin-converting enzyme by a membrane-associated metalloprotease. Biochemistry. 1995 Oct 3;34(39):12645–12652. doi: 10.1021/bi00039a021. [DOI] [PubMed] [Google Scholar]
  24. Relton J. M., Gee N. S., Matsas R., Turner A. J., Kenny A. J. Purification of endopeptidase-24.11 ('enkephalinase') from pig brain by immunoadsorbent chromatography. Biochem J. 1983 Dec 1;215(3):519–523. doi: 10.1042/bj2150519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Roberts S. B., Ripellino J. A., Ingalls K. M., Robakis N. K., Felsenstein K. M. Non-amyloidogenic cleavage of the beta-amyloid precursor protein by an integral membrane metalloendopeptidase. J Biol Chem. 1994 Jan 28;269(4):3111–3116. [PubMed] [Google Scholar]
  26. Rose-John S., Heinrich P. C. Soluble receptors for cytokines and growth factors: generation and biological function. Biochem J. 1994 Jun 1;300(Pt 2):281–290. doi: 10.1042/bj3000281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  28. Schwartz M. A., Van Wart H. E. Synthetic inhibitors of bacterial and mammalian interstitial collagenases. Prog Med Chem. 1992;29:271–334. doi: 10.1016/s0079-6468(08)70011-0. [DOI] [PubMed] [Google Scholar]
  29. Wei L., Alhenc-Gelas F., Soubrier F., Michaud A., Corvol P., Clauser E. Expression and characterization of recombinant human angiotensin I-converting enzyme. Evidence for a C-terminal transmembrane anchor and for a proteolytic processing of the secreted recombinant and plasma enzymes. J Biol Chem. 1991 Mar 25;266(9):5540–5546. [PubMed] [Google Scholar]
  30. Zhang D., Botos I., Gomis-Rüth F. X., Doll R., Blood C., Njoroge F. G., Fox J. W., Bode W., Meyer E. F. Structural interaction of natural and synthetic inhibitors with the venom metalloproteinase, atrolysin C (form d). Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8447–8451. doi: 10.1073/pnas.91.18.8447. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES