Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Oct 1;327(Pt 1):51–57. doi: 10.1042/bj3270051

Carbon dioxide and light regulation of promoters controlling the expression of mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii.

P Villand 1, M Eriksson 1, G Samuelsson 1
PMCID: PMC1218762  PMID: 9355734

Abstract

Nuclear genes coding for carbonic anhydrase, a major mitochondrial constituent in Chlamydomonas reinhardtii grown under limited CO2, were characterized. Two genes, ca1 and ca2, were found within 7 kb of genomic DNA, organized 'head to head' in a large inverted repeat. The DNA sequences for the two genes were very similar, even in the promoter regions and in introns, indicating that the repeat is a result of a recent duplication. To study gene regulation, elements from the upstream region of ca1 were fused to the arylsulphatase reporter gene. After transformation, the expression of arylsulphatase was regulated similarly to the endogenous ca1/ca2 genes, even when the promoter was trimmed down to 194 nt. Expression could not be detected when 5% CO2 was bubbled into the growth medium, but was induced within hours after transfer to air. The ca1 promoter was not induced in low light, but at intermediate light levels its activity was dependent on the irradiance. O2 concentration had no effect on the promoter activity, indicating that photorespiratory metabolites are not triggering the response. The availability of cells transformed with a CO2-regulated reporter gene should facilitate further studies on the metabolic adaptations that occur in some green algae in response to the external CO2 level.

Full Text

The Full Text of this article is available as a PDF (480.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Breathnach R., Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem. 1981;50:349–383. doi: 10.1146/annurev.bi.50.070181.002025. [DOI] [PubMed] [Google Scholar]
  2. Burow M. D., Chen Z. Y., Mouton T. M., Moroney J. V. Isolation of cDNA clones of genes induced upon transfer of Chlamydomonas reinhardtii cells to low CO2. Plant Mol Biol. 1996 May;31(2):443–448. doi: 10.1007/BF00021807. [DOI] [PubMed] [Google Scholar]
  3. Chen Z. Y., Burow M. D., Mason C. B., Moroney J. V. A low-CO2-inducible gene encoding an alanine: alpha-ketoglutarate aminotransferase in Chlamydomonas reinhardtii. Plant Physiol. 1996 Oct;112(2):677–684. doi: 10.1104/pp.112.2.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davies J. P., Weeks D. P., Grossman A. R. Expression of the arylsulfatase gene from the beta 2-tubulin promoter in Chlamydomonas reinhardtii. Nucleic Acids Res. 1992 Jun 25;20(12):2959–2965. doi: 10.1093/nar/20.12.2959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davies J. P., Yildiz F. H., Grossman A. Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. EMBO J. 1996 May 1;15(9):2150–2159. [PMC free article] [PubMed] [Google Scholar]
  6. Debuchy R., Purton S., Rochaix J. D. The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J. 1989 Oct;8(10):2803–2809. doi: 10.1002/j.1460-2075.1989.tb08426.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dionisio-Sese M. L., Fukuzawa H., Miyachi S. Light-Induced Carbonic Anhydrase Expression in Chlamydomonas reinhardtii. Plant Physiol. 1990 Nov;94(3):1103–1110. doi: 10.1104/pp.94.3.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eriksson M., Gardestrom P., Samuelsson G. Isolation, Purification, and Characterization of Mitochondria from Chlamydomonas reinhardtii. Plant Physiol. 1995 Feb;107(2):479–483. doi: 10.1104/pp.107.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eriksson M., Karlsson J., Ramazanov Z., Gardeström P., Samuelsson G. Discovery of an algal mitochondrial carbonic anhydrase: molecular cloning and characterization of a low-CO2-induced polypeptide in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):12031–12034. doi: 10.1073/pnas.93.21.12031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fujiwara S., Fukuzawa H., Tachiki A., Miyachi S. Structure and differential expression of two genes encoding carbonic anhydrase in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9779–9783. doi: 10.1073/pnas.87.24.9779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fukuzawa H., Fujiwara S., Yamamoto Y., Dionisio-Sese M. L., Miyachi S. cDNA cloning, sequence, and expression of carbonic anhydrase in Chlamydomonas reinhardtii: regulation by environmental CO2 concentration. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4383–4387. doi: 10.1073/pnas.87.11.4383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kaplan A., Berry J. A. Glycolate Excretion and the Oxygen to Carbon Dioxide Net Exchange Ratio during Photosynthesis in Chlamydomonas reinhardtii. Plant Physiol. 1981 Feb;67(2):229–232. doi: 10.1104/pp.67.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kindle K. L. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1228–1232. doi: 10.1073/pnas.87.3.1228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Marek L. F., Spalding M. H. Changes in Photorespiratory Enzyme Activity in Response to Limiting CO(2) in Chlamydomonas reinhardtii. Plant Physiol. 1991 Sep;97(1):420–425. doi: 10.1104/pp.97.1.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Palmqvist K., Sjöberg S., Samuelsson G. Induction of Inorganic Carbon Accumulation in the Unicellular Green Algae Scenedesmus obliquus and Chlamydomonas reinhardtii. Plant Physiol. 1988 Jun;87(2):437–442. doi: 10.1104/pp.87.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Purton S., Rochaix J. D. Complementation of a Chlamydomonas reinhardtii mutant using a genomic cosmid library. Plant Mol Biol. 1994 Feb;24(3):533–537. doi: 10.1007/BF00024121. [DOI] [PubMed] [Google Scholar]
  18. Rawat M., Moroney J. V. The Regulation of Carbonic Anhydrase and Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Activase by Light and CO2 in Chlamydomonas reinhardtii. Plant Physiol. 1995 Nov;109(3):937–944. doi: 10.1104/pp.109.3.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tam L. W., Lefebvre P. A. Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics. 1993 Oct;135(2):375–384. doi: 10.1093/genetics/135.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weeks D. P., Beerman N., Griffith O. M. A small-scale five-hour procedure for isolating multiple samples of CsCl-purified DNA: application to isolations from mammalian, insect, higher plant, algal, yeast, and bacterial sources. Anal Biochem. 1986 Feb 1;152(2):376–385. doi: 10.1016/0003-2697(86)90423-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES