Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Oct 1;327(Pt 1):65–71. doi: 10.1042/bj3270065

Specificity of the hyaluronate lyase of group-B streptococcus toward unsulphated regions of chondroitin sulphate.

J R Baker 1, H Yu 1, K Morrison 1, W F Averett 1, D G Pritchard 1
PMCID: PMC1218764  PMID: 9355736

Abstract

The purification and properties of a hyaluronate lyase secreted by Streptococcus agalactiae, which is believed to facilitate the invasion of host tissues by the organism, have been described previously [Pritchard, Lin, Willingham and Baker (1994) Arch. Biochem. Biophys. 315, 431-436]. The specificity of the limited cleavage of chondroitin sulphate by the enzyme is the subject of this report. To simplify the task, a chondroitin sulphate from the Swarm rat chondrosarcoma, which contains only 4-sulphated and unsulphated disaccharide repeats, was used in this study. Tetrasaccharides from an ovine testicular hyaluronidase digest of the chondroitin sulphate were isolated, identified and tested as substrates of the streptococcal hyaluronate lyase. Only tetrasaccharides with an unsulphated disaccharide at the reducing end were cleaved (by elimination at the N-acetylgalactosaminidic bond). Thus chondroitin sulphate chains are cleaved by the action of this lyase at every unsulphated disaccharide repeat, but release of unsaturated unsulphated disaccharides only occurs from sites where two or more sequential unsulphated disaccharide repeats are present. Analysis of the chondrosarcoma chondroitin sulphate showed that of approximately five unsulphated disaccharide repeats per chain, two are clustered. The ability of group-B streptococcal hyaluronate lyase to cleave chondroitin sulphate may allow the organisms to invade tissues more efficiently. The demonstrated specific and highly limited cleavage of chondroitin sulphate by this bacterial lyase promises to be a useful tool in the determination of chondroitin sulphate structure and variability.

Full Text

The Full Text of this article is available as a PDF (504.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker J. R., Christner J. E., Ekborg S. L. An unsulphated region of the rat chondrosarcoma chondroitin sulphate chain and its binding to monoclonal antibody 3B3. Biochem J. 1991 Jan 1;273(Pt 1):237–239. doi: 10.1042/bj2730237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bourin M. C., Lundgren-Akerlund E., Lindahl U. Isolation and characterization of the glycosaminoglycan component of rabbit thrombomodulin proteoglycan. J Biol Chem. 1990 Sep 15;265(26):15424–15431. [PubMed] [Google Scholar]
  3. Carney S. L., Osborne D. J. The separation of chondroitin sulfate disaccharides and hyaluronan oligosaccharides by capillary zone electrophoresis. Anal Biochem. 1991 May 15;195(1):132–140. doi: 10.1016/0003-2697(91)90308-g. [DOI] [PubMed] [Google Scholar]
  4. Caterson B., Baker J. R. The link proteins as specific components of cartilage proteoglycan aggregates in vivo. Associative extraction of proteoglycan aggregate from swarm rat chondrosarcoma. J Biol Chem. 1979 Apr 10;254(7):2394–2399. [PubMed] [Google Scholar]
  5. Chai W., Kogelberg H., Lawson A. M. Generation and structural characterization of a range of unmodified chondroitin sulfate oligosaccharide fragments. Anal Biochem. 1996 May 15;237(1):88–102. doi: 10.1006/abio.1996.0205. [DOI] [PubMed] [Google Scholar]
  6. Cheng F., Yoshida K., Heinegård D., Fransson L. A. A new method for sequence analysis of glycosaminoglycans from heavily substituted proteoglycans reveals non-random positioning of 4- and 6-O-sulphated N-acetylgalactosamine in aggrecan-derived chondroitin sulphate. Glycobiology. 1992 Dec;2(6):553–561. doi: 10.1093/glycob/2.6.553. [DOI] [PubMed] [Google Scholar]
  7. Comper W. D., Laurent T. C. Physiological function of connective tissue polysaccharides. Physiol Rev. 1978 Jan;58(1):255–315. doi: 10.1152/physrev.1978.58.1.255. [DOI] [PubMed] [Google Scholar]
  8. Delaney S. R., Conrad H. E., Glaser J. H. A high-performance liquid chromatography approach for isolation and sequencing of chondroitin sulfate oligosaccharides. Anal Biochem. 1980 Oct;108(1):25–34. doi: 10.1016/0003-2697(80)90689-2. [DOI] [PubMed] [Google Scholar]
  9. Hascall V. C., Riolo R. L., Hayward J., Jr, Reynolds C. C. Treatment of bovine nasal cartilage proteoglycan with chondroitinases from Flavobacterium heparinum and Proteus vulgaris. J Biol Chem. 1972 Jul 25;247(14):4521–4528. [PubMed] [Google Scholar]
  10. Jandik K. A., Gu K., Linhardt R. J. Action pattern of polysaccharide lyases on glycosaminoglycans. Glycobiology. 1994 Jun;4(3):289–296. doi: 10.1093/glycob/4.3.289. [DOI] [PubMed] [Google Scholar]
  11. Karamanos N. K., Syrokou A., Vanky P., Nurminen M., Hjerpe A. Determination of 24 variously sulfated galactosaminoglycan- and hyaluronan-derived disaccharides by high-performance liquid chromatography. Anal Biochem. 1994 Aug 15;221(1):189–199. doi: 10.1006/abio.1994.1396. [DOI] [PubMed] [Google Scholar]
  12. Lin B., Hollingshead S. K., Coligan J. E., Egan M. L., Baker J. R., Pritchard D. G. Cloning and expression of the gene for group B streptococcal hyaluronate lyase. J Biol Chem. 1994 Dec 2;269(48):30113–30116. [PubMed] [Google Scholar]
  13. Lucas M., Mazzone T. Cell surface proteoglycans modulate net synthesis and secretion of macrophage apolipoprotein E. J Biol Chem. 1996 Jun 7;271(23):13454–13460. doi: 10.1074/jbc.271.23.13454. [DOI] [PubMed] [Google Scholar]
  14. MEYER K., RAPPORT M. M. The mucopolysaccharides of the ground substance of connective tissue. Science. 1951 May 25;113(2943):596–599. doi: 10.1126/science.113.2943.596. [DOI] [PubMed] [Google Scholar]
  15. Midura R. J., Calabro A., Yanagishita M., Hascall V. C. Nonreducing end structures of chondroitin sulfate chains on aggrecan isolated from Swarm rat chondrosarcoma cultures. J Biol Chem. 1995 Apr 7;270(14):8009–8015. doi: 10.1074/jbc.270.14.8009. [DOI] [PubMed] [Google Scholar]
  16. Oegema T. R., Jr, Hascall V. C., Dziewiatkowski D. D. Isolation and characterization of proteoglycans from the swarm rat chondrosarcoma. J Biol Chem. 1975 Aug 10;250(15):6151–6159. [PubMed] [Google Scholar]
  17. Pritchard D. G., Lin B., Willingham T. R., Baker J. R. Characterization of the group B streptococcal hyaluronate lyase. Arch Biochem Biophys. 1994 Dec;315(2):431–437. doi: 10.1006/abbi.1994.1521. [DOI] [PubMed] [Google Scholar]
  18. Saito H., Yamagata T., Suzuki S. Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates. J Biol Chem. 1968 Apr 10;243(7):1536–1542. [PubMed] [Google Scholar]
  19. Sambandam T., Baker J. R., Christner J. E., Ekborg S. L. Specificity of the low density lipoprotein-glycosaminoglycan interaction. Arterioscler Thromb. 1991 May-Jun;11(3):561–568. doi: 10.1161/01.atv.11.3.561. [DOI] [PubMed] [Google Scholar]
  20. Takagaki K., Nakamura T., Izumi J., Saitoh H., Endo M., Kojima K., Kato I., Majima M. Characterization of hydrolysis and transglycosylation by testicular hyaluronidase using ion-spray mass spectrometry. Biochemistry. 1994 May 31;33(21):6503–6507. doi: 10.1021/bi00187a017. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES