Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Oct 1;327(Pt 1):161–169. doi: 10.1042/bj3270161

Expression, purification and characterization of Arabidopsis thaliana acetohydroxyacid synthase.

A K Chang 1, R G Duggleby 1
PMCID: PMC1218776  PMID: 9355748

Abstract

Acetohydroxyacid synthase (EC 4.1.3.18) is the enzyme that catalyses the first step in the synthesis of the branched-chain amino acids valine, leucine and isoleucine. The AHAS gene from Arabidopsis thaliana with part of the chloroplast transit sequence removed was cloned into the bacterial expression vector pT7-7 and expressed in the Escherichia coli strain BL21(DE3). The expressed enzyme was purified by an extensive procedure involving (NH4)2SO4 fractionation followed by hydrophobic and anion-exchange chromatography. The purified enzyme appears as a single band on SDS/PAGE with a molecular mass of about 61 kDa. On gel filtration the enzyme is a dimer, migrating as a single peak with molecular masses of 109 and 113 kDa in the absence and presence of FAD respectively. Ion spray MS analysis yielded a mass of 63864 Da. The enzyme has optimum activity in the pH range 6.5-8.5 and exhibits absolute dependence on the three cofactors FAD, Mg2+ and thiamine diphosphate for activity. It displays negatively co-operative kinetics with respect to pyruvate concentration. A model was derived to explain the non-hyperbolic substrate-saturation curve, involving interaction between the active sites of the dimer. The Km for the first active site was found to be 8.01 +/- 0.66 mM; the Km for the second active site could not be accurately determined but was estimated to be approx. 100 mM. The enzyme is insensitive to valine, leucine and isoleucine but is strongly inhibited by the sulphonylurea herbicide, chlorsulphuron, and the imidazolinone herbicide, imazapyr. Inhibition by both herbicides exhibits slow-binding kinetics, whereas chlorsulphuron also shows tight-binding inhibition.

Full Text

The Full Text of this article is available as a PDF (379.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barak Z., Calvo J. M., Schloss J. V. Acetolactate synthase isozyme III from Escherichia coli. Methods Enzymol. 1988;166:455–458. doi: 10.1016/s0076-6879(88)66059-9. [DOI] [PubMed] [Google Scholar]
  2. Candy J. M., Koga J., Nixon P. F., Duggleby R. G. The role of residues glutamate-50 and phenylalanine-496 in Zymomonas mobilis pyruvate decarboxylase. Biochem J. 1996 May 1;315(Pt 3):745–751. doi: 10.1042/bj3150745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chaleff R. S., Mauvais C. J. Acetolactate synthase is the site of action of two sulfonylurea herbicides in higher plants. Science. 1984 Jun 29;224(4656):1443–1445. doi: 10.1126/science.224.4656.1443. [DOI] [PubMed] [Google Scholar]
  4. Cullin C., Baudin-Baillieu A., Guillemet E., Ozier-Kalogeropoulos O. Functional analysis of YCL09C: evidence for a role as the regulatory subunit of acetolactate synthase. Yeast. 1996 Dec;12(15):1511–1518. doi: 10.1002/(sici)1097-0061(199612)12:15<1511::aid-yea41>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
  5. Davies M. E. Acetolactate and Acetoin Synthesis in Ripening Peas. Plant Physiol. 1964 Jan;39(1):53–59. doi: 10.1104/pp.39.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Duggleby R. G. Determination of inhibition constants, I50 values and the type of inhibition for enzyme-catalyzed reactions. Biochem Med Metab Biol. 1988 Oct;40(2):204–212. doi: 10.1016/0885-4505(88)90120-x. [DOI] [PubMed] [Google Scholar]
  7. Duggleby R. G. Identification of an acetolactate synthase small subunit gene in two eukaryotes. Gene. 1997 May 6;190(2):245–249. doi: 10.1016/s0378-1119(97)00002-4. [DOI] [PubMed] [Google Scholar]
  8. Duggleby R. G. Regression analysis of nonlinear Arrhenius plots: an empirical model and a computer program. Comput Biol Med. 1984;14(4):447–455. doi: 10.1016/0010-4825(84)90045-3. [DOI] [PubMed] [Google Scholar]
  9. Durner J., Böger P. Oligomeric forms of plant acetolactate synthase depend on flavin adenine dinucleotide. Plant Physiol. 1990 Jul;93(3):1027–1031. doi: 10.1104/pp.93.3.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Durner J., Gailus V., Böger P. New aspects on inhibition of plant acetolactate synthase by chlorsulfuron and imazaquin. Plant Physiol. 1991 Apr;95(4):1144–1149. doi: 10.1104/pp.95.4.1144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Durner J., Gailus V., Böger P. The oxygenase reaction of acetolactate synthase detected by chemiluminescence. FEBS Lett. 1994 Oct 31;354(1):71–73. doi: 10.1016/0014-5793(94)01097-8. [DOI] [PubMed] [Google Scholar]
  12. Elvin C. M., Thompson P. R., Argall M. E., Hendry P., Stamford N. P., Lilley P. E., Dixon N. E. Modified bacteriophage lambda promoter vectors for overproduction of proteins in Escherichia coli. Gene. 1990 Mar 1;87(1):123–126. doi: 10.1016/0378-1119(90)90503-j. [DOI] [PubMed] [Google Scholar]
  13. Eoyang L., Silverman P. M. Purification and subunit composition of acetohydroxyacid synthase I from Escherichia coli K-12. J Bacteriol. 1984 Jan;157(1):184–189. doi: 10.1128/jb.157.1.184-189.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Falco S. C., Dumas K. S., Livak K. J. Nucleotide sequence of the yeast ILV2 gene which encodes acetolactate synthase. Nucleic Acids Res. 1985 Jun 11;13(11):4011–4027. doi: 10.1093/nar/13.11.4011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grimminger H., Umbarger H. E. Acetohydroxy acid synthase I of Escherichia coli: purification and properties. J Bacteriol. 1979 Feb;137(2):846–853. doi: 10.1128/jb.137.2.846-853.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Grula J. W., Hudspeth R. L., Hobbs S. L., Anderson D. M. Organization, inheritance and expression of acetohydroxyacid synthase genes in the cotton allotetraploid Gossypium hirsutum. Plant Mol Biol. 1995 Aug;28(5):837–846. doi: 10.1007/BF00042069. [DOI] [PubMed] [Google Scholar]
  17. Hattori J., Rutledge R., Labbé H., Brown D., Sunohara G., Miki B. Multiple resistance to sulfonylureas and imidazolinones conferred by an acetohydroxyacid synthase gene with separate mutations for selective resistance. Mol Gen Genet. 1992 Mar;232(2):167–173. doi: 10.1007/BF00279993. [DOI] [PubMed] [Google Scholar]
  18. Henderson P. J. A linear equation that describes the steady-state kinetics of enzymes and subcellular particles interacting with tightly bound inhibitors. Biochem J. 1972 Apr;127(2):321–333. doi: 10.1042/bj1270321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LaRossa R. A., Schloss J. V. The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium. J Biol Chem. 1984 Jul 25;259(14):8753–8757. [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Mazur B. J., Chui C. F., Smith J. K. Isolation and characterization of plant genes coding for acetolactate synthase, the target enzyme for two classes of herbicides. Plant Physiol. 1987 Dec;85(4):1110–1117. doi: 10.1104/pp.85.4.1110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mourad G., Williams D., King J. A double mutant allele, csr1-4, of Arabidopsis thaliana encodes an acetolactate synthase with altered kinetics. Planta. 1995;196(1):64–68. doi: 10.1007/BF00193218. [DOI] [PubMed] [Google Scholar]
  23. Muhitch M. J., Shaner D. L., Stidham M. A. Imidazolinones and acetohydroxyacid synthase from higher plants: properties of the enzyme from maize suspension culture cells and evidence for the binding of imazapyr to acetohydroxyacid synthase in vivo. Plant Physiol. 1987 Feb;83(2):451–456. doi: 10.1104/pp.83.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Muller Y. A., Lindqvist Y., Furey W., Schulz G. E., Jordan F., Schneider G. A thiamin diphosphate binding fold revealed by comparison of the crystal structures of transketolase, pyruvate oxidase and pyruvate decarboxylase. Structure. 1993 Oct 15;1(2):95–103. doi: 10.1016/0969-2126(93)90025-c. [DOI] [PubMed] [Google Scholar]
  25. Nikkola M., Lindqvist Y., Schneider G. Refined structure of transketolase from Saccharomyces cerevisiae at 2.0 A resolution. J Mol Biol. 1994 May 6;238(3):387–404. doi: 10.1006/jmbi.1994.1299. [DOI] [PubMed] [Google Scholar]
  26. Ott K. H., Kwagh J. G., Stockton G. W., Sidorov V., Kakefuda G. Rational molecular design and genetic engineering of herbicide resistant crops by structure modeling and site-directed mutagenesis of acetohydroxyacid synthase. J Mol Biol. 1996 Oct 25;263(2):359–368. doi: 10.1006/jmbi.1996.0580. [DOI] [PubMed] [Google Scholar]
  27. Poulsen C., Stougaard P. Purification and properties of Saccharomyces cerevisiae acetolactate synthase from recombinant Escherichia coli. Eur J Biochem. 1989 Nov 6;185(2):433–439. doi: 10.1111/j.1432-1033.1989.tb15133.x. [DOI] [PubMed] [Google Scholar]
  28. Rutledge R. G., Quellet T., Hattori J., Miki B. L. Molecular characterization and genetic origin of the Brassica napus acetohydroxyacid synthase multigene family. Mol Gen Genet. 1991 Sep;229(1):31–40. doi: 10.1007/BF00264210. [DOI] [PubMed] [Google Scholar]
  29. Ryan E. D., Kohlhaw G. B. Subcellular localization of isoleucine-valine biosynthetic enzymes in yeast. J Bacteriol. 1974 Nov;120(2):631–637. doi: 10.1128/jb.120.2.631-637.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schloss J. V., Van Dyk D. E. Acetolactate synthase isozyme II from Salmonella typhimurium. Methods Enzymol. 1988;166:445–454. doi: 10.1016/s0076-6879(88)66058-7. [DOI] [PubMed] [Google Scholar]
  31. Schloss J. V., Van Dyk D. E., Vasta J. F., Kutny R. M. Purification and properties of Salmonella typhimurium acetolactate synthase isozyme II from Escherichia coli HB101/pDU9. Biochemistry. 1985 Aug 27;24(18):4952–4959. doi: 10.1021/bi00339a034. [DOI] [PubMed] [Google Scholar]
  32. Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
  33. Shaner D. L., Singh B. K. Imidazolinone-induced loss of acetohydroxyacid synthase activity in maize is not due to the enzyme degradation. Plant Physiol. 1991 Dec;97(4):1339–1341. doi: 10.1104/pp.97.4.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Singh B. K., Stidham M. A., Shaner D. L. Assay of acetohydroxyacid synthase. Anal Biochem. 1988 May 15;171(1):173–179. doi: 10.1016/0003-2697(88)90139-x. [DOI] [PubMed] [Google Scholar]
  35. Singh B., Szamosi I., Hand J. M., Misra R. Arabidopsis Acetohydroxyacid Synthase Expressed in Escherichia coli Is Insensitive to the Feedback Inhibitors. Plant Physiol. 1992 Jul;99(3):812–816. doi: 10.1104/pp.99.3.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Smith J. K., Schloss J. V., Mazur B. J. Functional expression of plant acetolactate synthase genes in Escherichia coli. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4179–4183. doi: 10.1073/pnas.86.11.4179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Subramanian M. V., Hung H. Y., Dias J. M., Miner V. W., Butler J. H., Jachetta J. J. Properties of mutant acetolactate synthases resistant to triazolopyrimidine sulfonanilide. Plant Physiol. 1990 Sep;94(1):239–244. doi: 10.1104/pp.94.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Subramanian M. V., Loney-Gallant V., Dias J. M., Mireles L. C. Acetolactate synthase inhibiting herbicides bind to the regulatory site. Plant Physiol. 1991 May;96(1):310–313. doi: 10.1104/pp.96.1.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Varon R., Garcia-Sevilla F., Garcia-Moreno M., Garcia-Canovas F., Peyro R., Duggleby R. G. Computer program for the equations describing the steady state of enzyme reactions. Comput Appl Biosci. 1997 Apr;13(2):159–167. doi: 10.1093/bioinformatics/13.2.159. [DOI] [PubMed] [Google Scholar]
  40. Vyazmensky M., Sella C., Barak Z., Chipman D. M. Isolation and characterization of subunits of acetohydroxy acid synthase isozyme III and reconstitution of the holoenzyme. Biochemistry. 1996 Aug 13;35(32):10339–10346. doi: 10.1021/bi9605604. [DOI] [PubMed] [Google Scholar]
  41. Wiersma P. A., Hachey J. E., Crosby W. L., Moloney M. M. Specific truncations of an acetolactate synthase gene from Brassica napus efficiently complement ilvB/ilvG mutants of Salmonella typhimurium. Mol Gen Genet. 1990 Oct;224(1):155–159. doi: 10.1007/BF00259463. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES