Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Oct 1;327(Pt 1):177–184. doi: 10.1042/bj3270177

Common-type acylphosphatase: steady-state kinetics and leaving-group dependence.

P Paoli 1, P Cirri 1, L Camici 1, G Manao 1, G Cappugi 1, G Moneti 1, G Pieraccini 1, G Camici 1, G Ramponi 1
PMCID: PMC1218778  PMID: 9355750

Abstract

A number of acyl phosphates differing in the structure of the acyl moiety (as well as in the leaving-group pKa of the acids produced in hydrolysis) have been synthesized. The Km and Vmax values for the bovine common-type acylphosphatase isoenzyme have been measured at 25 degrees C and pH 5.3. The values of kcat differ widely in relation to the different structures of the tested acyl phosphates: linear relationships between log kcat and the leaving group pKa, as well as between log kcat/Km and the leaving-group pKa, were observed. On the other hand, the Km values of the different substrates are very close to each other, suggesting that the phosphate moiety of the substrate is the main chemical group interacting with the enzyme active site in the formation of the enzyme-substrate Michaelis complex. The enzyme does not catalyse transphosphorylation between substrate and concentrated nucleophilic acceptors (glycerol and methanol); nor does it catalyse H218O-inorganic phosphate oxygen exchange. It seems that no phosphoenzyme intermediate is formed in the catalytic pathway. Furthermore, during the enzymic hydrolysis of benzoyl phosphate in the presence of 18O-labelled water, only inorganic phosphate (and not benzoate) incorporates 18O, suggesting that no acyl enzyme is formed transiently. all these findings, as well as the strong dependence of kcat upon the leaving group pK1, suggest that neither a nucleophilic enzyme group nor general acid catalysis are involved in the catalytic pathway. The enzyme is competitively inhibited by Pi, but it is not inhibited by the carboxylate ions produced during substrate hydrolysis, suggesting that the last step of the catalytic process is the release of Pi. The activation energy values for the catalysed and spontaneous hydrolysis of benzoyl phosphate have been determined.

Full Text

The Full Text of this article is available as a PDF (420.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atack J. R., Broughton H. B., Pollack S. J. Structure and mechanism of inositol monophosphatase. FEBS Lett. 1995 Mar 13;361(1):1–7. doi: 10.1016/0014-5793(95)00063-f. [DOI] [PubMed] [Google Scholar]
  2. BACCARI V., GUERRITORE A., RAMPONI G., SABATELLI M. P. [Action of acyl phosphatases on glycolysis]. Boll Soc Ital Biol Sper. 1960 Apr 30;36:360–362. [PubMed] [Google Scholar]
  3. Berti A., Degl'Innocenti D., Stefani M., Liguri G., Ramponi G. Quantitative determination of acylphosphatase levels in horse tissues by enzyme-linked immunosorbent assay. Ital J Biochem. 1987 Mar-Apr;36(2):82–91. [PubMed] [Google Scholar]
  4. Berti A., Degl'Innocenti D., Stefani M., Ramponi G. Expression and turnover of acylphosphatase (muscular isoenzyme) in L6 myoblasts during myogenesis. Arch Biochem Biophys. 1992 Apr;294(1):261–264. doi: 10.1016/0003-9861(92)90166-t. [DOI] [PubMed] [Google Scholar]
  5. Camici G., Manao G., Cappugi G., Ramponi G. A new synthesis of benzoyl phosphate: a substrate for acyl phosphatase assay. Experientia. 1976 Apr 15;32(4):535–536. doi: 10.1007/BF01920843. [DOI] [PubMed] [Google Scholar]
  6. Chiarugi P., Degl'Innocenti D., Raugei G., Fiaschi T., Ramponi G. Differential migration of acylphosphatase isoenzymes from cytoplasm to nucleus during apoptotic cell death. Biochem Biophys Res Commun. 1997 Feb 24;231(3):717–721. doi: 10.1006/bbrc.1997.6176. [DOI] [PubMed] [Google Scholar]
  7. Chiarugi P., Degl'Innocenti D., Taddei L., Raugei G., Berti A., Rigacci S., Ramponi G. Acylphosphatase is involved in differentiation of K562 cells. Cell Death Differ. 1997 May;4(4):334–340. doi: 10.1038/sj.cdd.4400230. [DOI] [PubMed] [Google Scholar]
  8. Chiarugi P., Raugei G., Fiaschi T., Taddei L., Camici G., Ramponi G. Characterization of a novel nucleolytic activity of acylphosphatases. Biochem Mol Biol Int. 1996 Sep;40(1):73–81. doi: 10.1080/15216549600201552. [DOI] [PubMed] [Google Scholar]
  9. Chiarugi P., Raugei G., Marzocchini R., Fiaschi T., Ciccarelli C., Berti A., Ramponi G. Differential modulation of expression of the two acylphosphatase isoenzymes by thyroid hormone. Biochem J. 1995 Oct 15;311(Pt 2):567–573. doi: 10.1042/bj3110567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cirri P., Chiarugi P., Camici G., Manao G., Raugei G., Cappugi G., Ramponi G. The role of Cys12, Cys17 and Arg18 in the catalytic mechanism of low-M(r) cytosolic phosphotyrosine protein phosphatase. Eur J Biochem. 1993 Jun 15;214(3):647–657. doi: 10.1111/j.1432-1033.1993.tb17965.x. [DOI] [PubMed] [Google Scholar]
  11. Denu J. M., Zhou G., Guo Y., Dixon J. E. The catalytic role of aspartic acid-92 in a human dual-specific protein-tyrosine-phosphatase. Biochemistry. 1995 Mar 14;34(10):3396–3403. doi: 10.1021/bi00010a031. [DOI] [PubMed] [Google Scholar]
  12. Ghetti A., Bolognesi M., Cobianchi F., Morandi C. Modeling by homology of RNA binding domain in A1 hnRNP protein. FEBS Lett. 1990 Dec 17;277(1-2):272–276. doi: 10.1016/0014-5793(90)80863-e. [DOI] [PubMed] [Google Scholar]
  13. Guan K. L., Dixon J. E. Evidence for protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate. J Biol Chem. 1991 Sep 15;266(26):17026–17030. [PubMed] [Google Scholar]
  14. HARARY I. The effect in vivo of thyroxine on acyl phosphatase of rat liver and muscle. Biochim Biophys Acta. 1958 Sep;29(3):647–648. doi: 10.1016/0006-3002(58)90027-1. [DOI] [PubMed] [Google Scholar]
  15. Hall A. D., Williams A. Leaving group dependence in the phosphorylation of Escherichia coli alkaline phosphatase by monophosphate esters. Biochemistry. 1986 Aug 26;25(17):4784–4790. doi: 10.1021/bi00365a010. [DOI] [PubMed] [Google Scholar]
  16. Hollfelder F., Herschlag D. The nature of the transition state for enzyme-catalyzed phosphoryl transfer. Hydrolysis of O-aryl phosphorothioates by alkaline phosphatase. Biochemistry. 1995 Sep 26;34(38):12255–12264. doi: 10.1021/bi00038a021. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Leech A. P., Baker G. R., Shute J. K., Cohen M. A., Gani D. Chemical and kinetic mechanism of the inositol monophosphatase reaction and its inhibition by Li+. Eur J Biochem. 1993 Mar 15;212(3):693–704. doi: 10.1111/j.1432-1033.1993.tb17707.x. [DOI] [PubMed] [Google Scholar]
  19. Mizuno Y., Ohba Y., Fujita H., Kanesaka Y., Tamura T., Shiokawa H. Distribution and classification of acylphosphatase isozymes. Arch Biochem Biophys. 1990 May 1;278(2):437–443. doi: 10.1016/0003-9861(90)90282-4. [DOI] [PubMed] [Google Scholar]
  20. Nagai K., Oubridge C., Jessen T. H., Li J., Evans P. R. Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nature. 1990 Dec 6;348(6301):515–520. doi: 10.1038/348515a0. [DOI] [PubMed] [Google Scholar]
  21. Nassi P., Liguri G., Nediani C., Taddei N., Piccinni P., Degl'Innocenti D., Gheri R. G., Ramponi G. Increased acylphosphatase levels in erythrocytes from hyperthyroid patients. Clin Chim Acta. 1989 Aug 31;183(3):351–358. doi: 10.1016/0009-8981(89)90370-7. [DOI] [PubMed] [Google Scholar]
  22. Nassi P., Liguri G., Nediani C., Taddei N., Ramponi G. Increased acylphosphatase levels in erythrocytes, muscle and liver of tri-iodothyronine treated rabbits. Horm Metab Res. 1990 Jan;22(1):33–37. doi: 10.1055/s-2007-1004843. [DOI] [PubMed] [Google Scholar]
  23. Nassi P., Nediani C., Liguri G., Taddei N., Ramponi G. Effects of acylphosphatase on the activity of erythrocyte membrane Ca2+ pump. J Biol Chem. 1991 Jun 15;266(17):10867–10871. [PubMed] [Google Scholar]
  24. Nediani C., Marchetti E., Nassi P., Liguri G., Ramponi G. Hydrolysis by acylphosphatase of erythrocyte membrane Na+, K(+)-ATPase phosphorylated intermediate. Biochem Int. 1991 Jul;24(5):959–968. [PubMed] [Google Scholar]
  25. Paoli P., Camici G., Manao G., Ramponi G. 2-Methoxybenzoyl phosphate: a new substrate for continuous fluorimetric and spectrophotometric acyl phosphatase assays. Experientia. 1995 Jan 15;51(1):57–62. doi: 10.1007/BF01964920. [DOI] [PubMed] [Google Scholar]
  26. Pastore A., Saudek V., Ramponi G., Williams R. J. Three-dimensional structure of acylphosphatase. Refinement and structure analysis. J Mol Biol. 1992 Mar 20;224(2):427–440. doi: 10.1016/0022-2836(92)91005-a. [DOI] [PubMed] [Google Scholar]
  27. Pazzagli L., Cappugi G., Camici G., Manao G., Ramponi G. Bovine testis acylphosphatase: purification and amino acid sequence. J Protein Chem. 1993 Oct;12(5):593–601. doi: 10.1007/BF01025124. [DOI] [PubMed] [Google Scholar]
  28. Pollack S. J., Atack J. R., Knowles M. R., McAllister G., Ragan C. I., Baker R., Fletcher S. R., Iversen L. L., Broughton H. B. Mechanism of inositol monophosphatase, the putative target of lithium therapy. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5766–5770. doi: 10.1073/pnas.91.13.5766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pot D. A., Woodford T. A., Remboutsika E., Haun R. S., Dixon J. E. Cloning, bacterial expression, purification, and characterization of the cytoplasmic domain of rat LAR, a receptor-like protein tyrosine phosphatase. J Biol Chem. 1991 Oct 15;266(29):19688–19696. [PubMed] [Google Scholar]
  30. Ramponi G. 1, 3-diphosphoglycerate phosphatase. Methods Enzymol. 1975;42:409–426. doi: 10.1016/0076-6879(75)42147-4. [DOI] [PubMed] [Google Scholar]
  31. Satchell D. P., Spencer N., White G. F. Kinetic studies with muscle acylphosphatase. Biochim Biophys Acta. 1972 Apr 7;268(1):233–248. doi: 10.1016/0005-2744(72)90220-3. [DOI] [PubMed] [Google Scholar]
  32. Su X. D., Taddei N., Stefani M., Ramponi G., Nordlund P. The crystal structure of a low-molecular-weight phosphotyrosine protein phosphatase. Nature. 1994 Aug 18;370(6490):575–578. doi: 10.1038/370575a0. [DOI] [PubMed] [Google Scholar]
  33. Taddei N., Chiarugi P., Cirri P., Fiaschi T., Stefani M., Camici G., Raugei G., Ramponi G. Aspartic-129 is an essential residue in the catalytic mechanism of the low M(r) phosphotyrosine protein phosphatase. FEBS Lett. 1994 Aug 22;350(2-3):328–332. doi: 10.1016/0014-5793(94)00805-1. [DOI] [PubMed] [Google Scholar]
  34. Taddei N., Stefani M., Magherini F., Chiti F., Modesti A., Raugei G., Ramponi G. Looking for residues involved in the muscle acylphosphatase catalytic mechanism and structural stabilization: role of Asn41, Thr42, and Thr46. Biochemistry. 1996 Jun 4;35(22):7077–7083. doi: 10.1021/bi952900b. [DOI] [PubMed] [Google Scholar]
  35. Taddei N., Stefani M., Vecchi M., Modesti A., Raugei G., Bucciantini M., Magherini F., Ramponi G. Arginine-23 is involved in the catalytic site of muscle acylphosphatase. Biochim Biophys Acta. 1994 Sep 21;1208(1):75–80. doi: 10.1016/0167-4838(94)90161-9. [DOI] [PubMed] [Google Scholar]
  36. Thunnissen M. M., Agango E. G., Taddei N., Liguri G., Cecchi C., Pieri A., Ramponi G., Nordlund P. Crystallisation and preliminary X-ray analysis of the 'common-type' acylphosphatase. FEBS Lett. 1995 May 15;364(3):243–244. doi: 10.1016/0014-5793(95)00363-e. [DOI] [PubMed] [Google Scholar]
  37. Thunnissen M. M., Taddei N., Liguri G., Ramponi G., Nordlund P. Crystal structure of common type acylphosphatase from bovine testis. Structure. 1997 Jan 15;5(1):69–79. doi: 10.1016/s0969-2126(97)00167-6. [DOI] [PubMed] [Google Scholar]
  38. Vincent J. B., Crowder M. W., Averill B. A. Hydrolysis of phosphate monoesters: a biological problem with multiple chemical solutions. Trends Biochem Sci. 1992 Mar;17(3):105–110. doi: 10.1016/0968-0004(92)90246-6. [DOI] [PubMed] [Google Scholar]
  39. Wu L., Zhang Z. Y. Probing the function of Asp128 in the lower molecular weight protein-tyrosine phosphatase-catalyzed reaction. A pre-steady-state and steady-state kinetic investigation. Biochemistry. 1996 Apr 30;35(17):5426–5434. doi: 10.1021/bi952885a. [DOI] [PubMed] [Google Scholar]
  40. York J. D., Ponder J. W., Chen Z. W., Mathews F. S., Majerus P. W. Crystal structure of inositol polyphosphate 1-phosphatase at 2.3-A resolution. Biochemistry. 1994 Nov 15;33(45):13164–13171. doi: 10.1021/bi00249a002. [DOI] [PubMed] [Google Scholar]
  41. Zhang M., Van Etten R. L., Stauffacher C. V. Crystal structure of bovine heart phosphotyrosyl phosphatase at 2.2-A resolution. Biochemistry. 1994 Sep 20;33(37):11097–11105. doi: 10.1021/bi00203a006. [DOI] [PubMed] [Google Scholar]
  42. Zhang Y., Liang J. Y., Huang S., Ke H., Lipscomb W. N. Crystallographic studies of the catalytic mechanism of the neutral form of fructose-1,6-bisphosphatase. Biochemistry. 1993 Feb 23;32(7):1844–1857. doi: 10.1021/bi00058a019. [DOI] [PubMed] [Google Scholar]
  43. Zhang Z. Y., Wang Y., Dixon J. E. Dissecting the catalytic mechanism of protein-tyrosine phosphatases. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1624–1627. doi: 10.1073/pnas.91.5.1624. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES