Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Oct 1;327(Pt 1):203–208. doi: 10.1042/bj3270203

Co-oxidation of NADH and NADPH by a mammalian 15-lipoxygenase: inhibition of lipoxygenase activity at near-physiological NADH concentrations.

V B O'donnell 1, H Kühn 1
PMCID: PMC1218782  PMID: 9355754

Abstract

The purified 15-lipoxygenase from rabbit reticulocytes is capable of oxidizing NADH in the presence of linoleic acid and oxygen. This co-oxidation proceeds at a rate that amounts to approx. 7% of linoleic acid oxygenation rates. Although NADH inhibits the lipoxygenase reaction with linoleic acid as substrate (46% inhibition at 0.2 mM NADH), the reaction specificity of the enzyme was not altered since (13S)-hydroperoxy-(9Z,11E)-octadecadienoic acid was identified as the major reaction product. NADH oxidation was inhibited by NAD+ (uncompetitive with respect to linoleate and mixed/competitive with respect to NADH), and NADPH or NMNH could substitute for NADH with slightly different apparent Km values. NADH oxidation was enhanced at lower oxygen tension, but was completely prevented under anaerobic conditions. Computer-assisted modelling of 15-lipoxygenase/NADH interaction and sequence alignments of mammalian lipoxygenases with NADH-dependent enzymes suggested that there is no specific binding of the coenzyme at the putative fatty acid-binding site of lipoxygenases. These results suggest that NAD(P)H might be oxidized by a radical intermediate formed during the dioxygenase cycle of the lipoxygenase reaction but that NADH oxidation might not proceed at the active site of the enzyme. The mechanism and possible biological consequences of 15-lipoxygenase-catalysed NAD(P)H oxidation are discussed.

Full Text

The Full Text of this article is available as a PDF (380.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AKAZAWA T., CONN E. E. The oxidation of reduced pyridine nucleotides by peroxidase. J Biol Chem. 1958 May;232(1):403–415. [PubMed] [Google Scholar]
  2. Anderson R. F. Energetics of the one-electron steps in the NAD+/NADH redox couple. Biochim Biophys Acta. 1980 Apr 2;590(2):277–281. doi: 10.1016/0005-2728(80)90032-8. [DOI] [PubMed] [Google Scholar]
  3. Belkner J., Wiesner R., Rathman J., Barnett J., Sigal E., Kühn H. Oxygenation of lipoproteins by mammalian lipoxygenases. Eur J Biochem. 1993 Apr 1;213(1):251–261. doi: 10.1111/j.1432-1033.1993.tb17755.x. [DOI] [PubMed] [Google Scholar]
  4. Boyington J. C., Gaffney B. J., Amzel L. M. The three-dimensional structure of an arachidonic acid 15-lipoxygenase. Science. 1993 Jun 4;260(5113):1482–1486. doi: 10.1126/science.8502991. [DOI] [PubMed] [Google Scholar]
  5. Buettner G. R. In the absence of catalytic metals ascorbate does not autoxidize at pH 7: ascorbate as a test for catalytic metals. J Biochem Biophys Methods. 1988 May;16(1):27–40. doi: 10.1016/0165-022x(88)90100-5. [DOI] [PubMed] [Google Scholar]
  6. Chamulitrat W., Mason R. P. Lipid peroxyl radical intermediates in the peroxidation of polyunsaturated fatty acids by lipoxygenase. Direct electron spin resonance investigations. J Biol Chem. 1989 Dec 15;264(35):20968–20973. [PubMed] [Google Scholar]
  7. Clapp C. H., Banerjee A., Rotenberg S. A. Inhibition of soybean lipoxygenase 1 by N-alkylhydroxylamines. Biochemistry. 1985 Apr 9;24(8):1826–1830. doi: 10.1021/bi00329a004. [DOI] [PubMed] [Google Scholar]
  8. Conrad D. J., Kuhn H., Mulkins M., Highland E., Sigal E. Specific inflammatory cytokines regulate the expression of human monocyte 15-lipoxygenase. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):217–221. doi: 10.1073/pnas.89.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Davies M. J. Detection of peroxyl and alkoxyl radicals produced by reaction of hydroperoxides with heme-proteins by electron spin resonance spectroscopy. Biochim Biophys Acta. 1988 Jan 12;964(1):28–35. doi: 10.1016/0304-4165(88)90063-3. [DOI] [PubMed] [Google Scholar]
  10. Eggink G., Engel H., Vriend G., Terpstra P., Witholt B. Rubredoxin reductase of Pseudomonas oleovorans. Structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints. J Mol Biol. 1990 Mar 5;212(1):135–142. doi: 10.1016/0022-2836(90)90310-I. [DOI] [PubMed] [Google Scholar]
  11. Egmond M. R., Brunori M., Fasella P. M. The steady-state kinetics of the oxygenation of linoleic acid catalysed by soybean lipoxygenase. Eur J Biochem. 1976 Jan 2;61(1):93–100. doi: 10.1111/j.1432-1033.1976.tb10001.x. [DOI] [PubMed] [Google Scholar]
  12. Jung G., Yang D. C., Nakao A. Oxygenation of phosphatidylcholine by human polymorphonuclear leukocyte 15-lipoxygenase. Biochem Biophys Res Commun. 1985 Jul 31;130(2):559–566. doi: 10.1016/0006-291x(85)90453-x. [DOI] [PubMed] [Google Scholar]
  13. KLEBANOFF S. J. An effect of thyroxine on the oxidation of reduced pyridine nucleotides by the peroxidase system. J Biol Chem. 1959 Sep;234:2480–2485. [PubMed] [Google Scholar]
  14. Karplus P. A., Daniels M. J., Herriott J. R. Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science. 1991 Jan 4;251(4989):60–66. [PubMed] [Google Scholar]
  15. Kemal C., Louis-Flamberg P., Krupinski-Olsen R., Shorter A. L. Reductive inactivation of soybean lipoxygenase 1 by catechols: a possible mechanism for regulation of lipoxygenase activity. Biochemistry. 1987 Nov 3;26(22):7064–7072. doi: 10.1021/bi00396a031. [DOI] [PubMed] [Google Scholar]
  16. Kuhn H., Belkner J., Wiesner R., Brash A. R. Oxygenation of biological membranes by the pure reticulocyte lipoxygenase. J Biol Chem. 1990 Oct 25;265(30):18351–18361. [PubMed] [Google Scholar]
  17. Kukreja R. C., Kontos H. A., Hess M. L., Ellis E. F. PGH synthase and lipoxygenase generate superoxide in the presence of NADH or NADPH. Circ Res. 1986 Dec;59(6):612–619. doi: 10.1161/01.res.59.6.612. [DOI] [PubMed] [Google Scholar]
  18. Kühn H., Belkner J., Wiesner R. Subcellular distribution of lipoxygenase products in rabbit reticulocyte membranes. Eur J Biochem. 1990 Jul 20;191(1):221–227. doi: 10.1111/j.1432-1033.1990.tb19113.x. [DOI] [PubMed] [Google Scholar]
  19. Kühn H., Salzmann-Reinhardt U., Ludwig P., Pönicke K., Schewe T., Rapoport S. The stoichiometry of oxygen uptake and conjugated diene formation during the dioxygenation of linoleic acid by the pure reticulocyte lipoxygenase. Evidence for aerobic hydroperoxidase activity. Biochim Biophys Acta. 1986 Apr 15;876(2):187–193. doi: 10.1016/0005-2760(86)90273-0. [DOI] [PubMed] [Google Scholar]
  20. Kühn H., Schewe T., Rapoport S. M. The stereochemistry of the reactions of lipoxygenases and their metabolites. Proposed nomenclature of lipoxygenases and related enzymes. Adv Enzymol Relat Areas Mol Biol. 1986;58:273–311. doi: 10.1002/9780470123041.ch7. [DOI] [PubMed] [Google Scholar]
  21. Ludwig P., Holzhütter H. G., Colosimo A., Silvestrini M. C., Schewe T., Rapoport S. M. A kinetic model for lipoxygenases based on experimental data with the lipoxygenase of reticulocytes. Eur J Biochem. 1987 Oct 15;168(2):325–337. doi: 10.1111/j.1432-1033.1987.tb13424.x. [DOI] [PubMed] [Google Scholar]
  22. Mansuy D., Cucurou C., Biatry B., Battioni J. P. Soybean lipoxygenase-catalyzed oxidations by linoleic acid hydroperoxide: different reducing substrates and dehydrogenation of phenidone and BW 755C. Biochem Biophys Res Commun. 1988 Feb 29;151(1):339–346. doi: 10.1016/0006-291x(88)90599-2. [DOI] [PubMed] [Google Scholar]
  23. Miller H., Poole L. B., Claiborne A. Heterogeneity among the flavin-containing NADH peroxidases of group D streptococci. Analysis of the enzyme from Streptococcus faecalis ATCC 9790. J Biol Chem. 1990 Jun 15;265(17):9857–9863. [PubMed] [Google Scholar]
  24. Murray J. J., Brash A. R. Rabbit reticulocyte lipoxygenase catalyzes specific 12(S) and 15(S) oxygenation of arachidonoyl-phosphatidylcholine. Arch Biochem Biophys. 1988 Sep;265(2):514–523. doi: 10.1016/0003-9861(88)90156-7. [DOI] [PubMed] [Google Scholar]
  25. Nassar G. M., Morrow J. D., Roberts L. J., 2nd, Lakkis F. G., Badr K. F. Induction of 15-lipoxygenase by interleukin-13 in human blood monocytes. J Biol Chem. 1994 Nov 4;269(44):27631–27634. [PubMed] [Google Scholar]
  26. Orii Y. Immediate reduction of cytochrome c by photoexcited NADH: reaction mechanism as revealed by flow-flash and rapid-scan studies. Biochemistry. 1993 Nov 9;32(44):11910–11914. doi: 10.1021/bi00095a021. [DOI] [PubMed] [Google Scholar]
  27. Ostareck-Lederer A., Ostareck D. H., Standart N., Thiele B. J. Translation of 15-lipoxygenase mRNA is inhibited by a protein that binds to a repeated sequence in the 3' untranslated region. EMBO J. 1994 Mar 15;13(6):1476–1481. doi: 10.1002/j.1460-2075.1994.tb06402.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Radi R., Bush K. M., Freeman B. A. The role of cytochrome c and mitochondrial catalase in hydroperoxide-induced heart mitochondrial lipid peroxidation. Arch Biochem Biophys. 1993 Jan;300(1):409–415. doi: 10.1006/abbi.1993.1055. [DOI] [PubMed] [Google Scholar]
  29. Rapoport S. M., Schewe T. The maturational breakdown of mitochondria in reticulocytes. Biochim Biophys Acta. 1986 Dec 22;864(3-4):471–495. doi: 10.1016/0304-4157(86)90006-7. [DOI] [PubMed] [Google Scholar]
  30. Rapoport S., Härtel B., Hausdorf G. Methionine sulfoxide formation: the cause of self-inactivation of reticulocyte lipoxygenase. Eur J Biochem. 1984 Mar 15;139(3):573–576. doi: 10.1111/j.1432-1033.1984.tb08043.x. [DOI] [PubMed] [Google Scholar]
  31. Ross R. P., Claiborne A. Cloning, sequence and overexpression of NADH peroxidase from Streptococcus faecalis 10C1. Structural relationship with the flavoprotein disulfide reductases. J Mol Biol. 1991 Oct 5;221(3):857–871. doi: 10.1016/0022-2836(91)80180-3. [DOI] [PubMed] [Google Scholar]
  32. Roy P., Roy S. K., Mitra A., Kulkarni A. P. Superoxide generation by lipoxygenase in the presence of NADH and NADPH. Biochim Biophys Acta. 1994 Sep 15;1214(2):171–179. doi: 10.1016/0005-2760(94)90041-8. [DOI] [PubMed] [Google Scholar]
  33. SEBRELL W. H., Jr Some problems in food toxicology. Fed Proc. 1960 Sep;19(Suppl 4):31–32. [PubMed] [Google Scholar]
  34. Schewe T., Halangk W., Hiebsch C., Rapoport S. M. A lipoxygenase in rabbit reticulocytes which attacks phospholipids and intact mitochondria. FEBS Lett. 1975 Dec 1;60(1):149–152. doi: 10.1016/0014-5793(75)80439-x. [DOI] [PubMed] [Google Scholar]
  35. Schnurr K., Belkner J., Ursini F., Schewe T., Kühn H. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase controls the activity of the 15-lipoxygenase with complex substrates and preserves the specificity of the oxygenation products. J Biol Chem. 1996 Mar 1;271(9):4653–4658. doi: 10.1074/jbc.271.9.4653. [DOI] [PubMed] [Google Scholar]
  36. Schnurr K., Hellwing M., Seidemann B., Jungblut P., Kuhn H., Rapoport S. M., Schewe T. Oxygenation of biomembranes by mammalian lipoxygenases: the role of ubiquinone. Free Radic Biol Med. 1996;20(1):11–21. doi: 10.1016/0891-5849(95)02012-8. [DOI] [PubMed] [Google Scholar]
  37. Tischler M. E., Friedrichs D., Coll K., Williamson J. R. Pyridine nucleotide distributions and enzyme mass action ratios in hepatocytes from fed and starved rats. Arch Biochem Biophys. 1977 Nov;184(1):222–236. doi: 10.1016/0003-9861(77)90346-0. [DOI] [PubMed] [Google Scholar]
  38. Veldink G. A., Vliegenthart J. F., Boldingh J. Plant lipoxygenases. Prog Chem Fats Other Lipids. 1977;15(2):131–166. doi: 10.1016/0079-6832(77)90014-3. [DOI] [PubMed] [Google Scholar]
  39. WILLIAMS-ASHMAN H. G., CASSMAN M., KLAVINS M. Two enzymic mechanisms for hydrogen transport by phenolic oestrogens. Nature. 1959 Aug 8;184:427–429. doi: 10.1038/184427a0. [DOI] [PubMed] [Google Scholar]
  40. Watson A., Doherty F. J. Calcium promotes membrane association of reticulocyte 15-lipoxygenase. Biochem J. 1994 Mar 1;298(Pt 2):377–383. doi: 10.1042/bj2980377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yamamoto S. Mammalian lipoxygenases: molecular structures and functions. Biochim Biophys Acta. 1992 Oct 30;1128(2-3):117–131. doi: 10.1016/0005-2760(92)90297-9. [DOI] [PubMed] [Google Scholar]
  42. Yokota K., Yamazaki I. Analysis and computer simulation of aerobic oxidation of reduced nicotinamide adenine dinucleotide catalyzed by horseradish peroxidase. Biochemistry. 1977 May 3;16(9):1913–1920. doi: 10.1021/bi00628a024. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES