Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Oct 1;327(Pt 1):225–231. doi: 10.1042/bj3270225

Mouse white adipocytes and 3T3-L1 cells display an anomalous pattern of carnitine palmitoyltransferase (CPT) I isoform expression during differentiation. Inter-tissue and inter-species expression of CPT I and CPT II enzymes.

N F Brown 1, J K Hill 1, V Esser 1, J L Kirkland 1, B E Corkey 1, D W Foster 1, J D McGarry 1
PMCID: PMC1218784  PMID: 9355756

Abstract

The outer mitochondrial membrane enzyme carnitine palmitoyltransferase I (CPT I) represents the initial and regulated step in the beta-oxidation of fatty acids. It exists in at least two isoforms, denoted L (liver) and M (muscle) types, with very different kinetic properties and sensitivities to malonyl-CoA. Here we have examined the relative expression of the CPT I isoforms in two different models of adipocyte differentiation and in a number of rat tissues. Adipocytes from mice, hamsters and humans were also evaluated. Primary monolayer cultures of undifferentiated rat preadipocytes expressed solely L-CPT I, but significant levels of M-CPT I emerged after only 3 days of differentiation in vitro; in the mature cell M-CPT I predominated. In sharp contrast, the murine 3T3-L1 preadipocyte expressed essentially exclusively L-CPT I, both in the undifferentiated state and throughout the differentiation process in vitro. This was also true of the mature mouse white fat cell. Fully developed adipocytes from the hamster and human behaved similarly to those of the rat. Thus the mouse white fat cell differs fundamentally from those of the other species examined in terms of tis choice of a key regulatory enzyme in fatty acid metabolism. In contrast, brown adipose tissue from all three rodents displayed the same isoform profiles, each expressing overwhelmingly M-CPT I. Northern blot analysis of other rat tissues established L-CPT I as the dominant isoform not only in liver but also in kidney, lung, ovary, spleen, brain, intestine and pancreatic islets. In addition to its primacy in skeletal muscle, heart and fat, M-CPT I was also found to dominate the testis. The same inter-tissue isoform pattern (with the exception of white fat) was found in the mouse. Taken together, the data bring to light an intriguing divergence between white adipocytes of the mouse and other mammalian species. They also raise a cautionary note that should be considered in the choice of animal model used in further studies of fat cell physiology.

Full Text

The Full Text of this article is available as a PDF (278.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asins G., Serra D., Arias G., Hegardt F. G. Developmental changes in carnitine palmitoyltransferases I and II gene expression in intestine and liver of suckling rats. Biochem J. 1995 Mar 1;306(Pt 2):379–384. doi: 10.1042/bj3060379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brindle N. P., Zammit V. A., Pogson C. I. Regulation of carnitine palmitoyltransferase activity by malonyl-CoA in mitochondria from sheep liver, a tissue with a low capacity for fatty acid synthesis. Biochem J. 1985 Nov 15;232(1):177–182. doi: 10.1042/bj2320177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Britton C. H., Schultz R. A., Zhang B., Esser V., Foster D. W., McGarry J. D. Human liver mitochondrial carnitine palmitoyltransferase I: characterization of its cDNA and chromosomal localization and partial analysis of the gene. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1984–1988. doi: 10.1073/pnas.92.6.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown N. F., Weis B. C., Husti J. E., Foster D. W., McGarry J. D. Mitochondrial carnitine palmitoyltransferase I isoform switching in the developing rat heart. J Biol Chem. 1995 Apr 14;270(15):8952–8957. doi: 10.1074/jbc.270.15.8952. [DOI] [PubMed] [Google Scholar]
  5. Carnicero H. H. Changes in the metabolism of long chain fatty acids during adipose differentiation of 3T3 L1 cells. J Biol Chem. 1984 Mar 25;259(6):3844–3850. [PubMed] [Google Scholar]
  6. Chen S., Ogawa A., Ohneda M., Unger R. H., Foster D. W., McGarry J. D. More direct evidence for a malonyl-CoA-carnitine palmitoyltransferase I interaction as a key event in pancreatic beta-cell signaling. Diabetes. 1994 Jul;43(7):878–883. doi: 10.2337/diab.43.7.878. [DOI] [PubMed] [Google Scholar]
  7. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Cornelius P., MacDougald O. A., Lane M. D. Regulation of adipocyte development. Annu Rev Nutr. 1994;14:99–129. doi: 10.1146/annurev.nu.14.070194.000531. [DOI] [PubMed] [Google Scholar]
  10. Djian P., Roncari A. K., Hollenberg C. H. Influence of anatomic site and age on the replication and differentiation of rat adipocyte precursors in culture. J Clin Invest. 1983 Oct;72(4):1200–1208. doi: 10.1172/JCI111075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Duan C., Winder W. W. Nerve stimulation decreases malonyl-CoA in skeletal muscle. J Appl Physiol (1985) 1992 Mar;72(3):901–904. doi: 10.1152/jappl.1992.72.3.901. [DOI] [PubMed] [Google Scholar]
  12. Erickson J. M., Rushford C. L., Dorney D. J., Wilson G. N., Schmickel R. D. Structure and variation of human ribosomal DNA: molecular analysis of cloned fragments. Gene. 1981 Dec;16(1-3):1–9. doi: 10.1016/0378-1119(81)90055-x. [DOI] [PubMed] [Google Scholar]
  13. Esser V., Britton C. H., Weis B. C., Foster D. W., McGarry J. D. Cloning, sequencing, and expression of a cDNA encoding rat liver carnitine palmitoyltransferase I. Direct evidence that a single polypeptide is involved in inhibitor interaction and catalytic function. J Biol Chem. 1993 Mar 15;268(8):5817–5822. [PubMed] [Google Scholar]
  14. Esser V., Brown N. F., Cowan A. T., Foster D. W., McGarry J. D. Expression of a cDNA isolated from rat brown adipose tissue and heart identifies the product as the muscle isoform of carnitine palmitoyltransferase I (M-CPT I). M-CPT I is the predominant CPT I isoform expressed in both white (epididymal) and brown adipocytes. J Biol Chem. 1996 Mar 22;271(12):6972–6977. doi: 10.1074/jbc.271.12.6972. [DOI] [PubMed] [Google Scholar]
  15. Finocchiaro G., Taroni F., Rocchi M., Martin A. L., Colombo I., Tarelli G. T., DiDonato S. cDNA cloning, sequence analysis, and chromosomal localization of the gene for human carnitine palmitoyltransferase. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):661–665. doi: 10.1073/pnas.88.2.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Harper R. D., Saggerson E. D. Factors affecting fatty acid oxidation in fat cells isolated from rat white adipose tissue. J Lipid Res. 1976 Sep;17(5):516–526. [PubMed] [Google Scholar]
  17. Kirkland J. L., Hollenberg C. H., Gillon W. S. Age, anatomic site, and the replication and differentiation of adipocyte precursors. Am J Physiol. 1990 Feb;258(2 Pt 1):C206–C210. doi: 10.1152/ajpcell.1990.258.2.C206. [DOI] [PubMed] [Google Scholar]
  18. Kirkland J. L., Hollenberg C. H., Gillon W. S. Effects of fat depot site on differentiation-dependent gene expression in rat preadipocytes. Int J Obes Relat Metab Disord. 1996 Mar;20 (Suppl 3):S102–S107. [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Lacy P. E., Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 1967 Jan;16(1):35–39. doi: 10.2337/diab.16.1.35. [DOI] [PubMed] [Google Scholar]
  21. Ley T. J., Anagnou N. P., Pepe G., Nienhuis A. W. RNA processing errors in patients with beta-thalassemia. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4775–4779. doi: 10.1073/pnas.79.15.4775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mackall J. C., Student A. K., Polakis S. E., Lane M. D. Induction of lipogenesis during differentiation in a "preadipocyte" cell line. J Biol Chem. 1976 Oct 25;251(20):6462–6464. [PubMed] [Google Scholar]
  23. McGarry J. D., Brown N. F. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem. 1997 Feb 15;244(1):1–14. doi: 10.1111/j.1432-1033.1997.00001.x. [DOI] [PubMed] [Google Scholar]
  24. McGarry J. D., Foster D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395–420. doi: 10.1146/annurev.bi.49.070180.002143. [DOI] [PubMed] [Google Scholar]
  25. McGarry J. D., Mills S. E., Long C. S., Foster D. W. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat. Biochem J. 1983 Jul 15;214(1):21–28. doi: 10.1042/bj2140021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McGarry J. D., Sen A., Esser V., Woeltje K. F., Weis B., Foster D. W. New insights into the mitochondrial carnitine palmitoyltransferase enzyme system. Biochimie. 1991 Jan;73(1):77–84. doi: 10.1016/0300-9084(91)90078-f. [DOI] [PubMed] [Google Scholar]
  27. McGarry J. D., Woeltje K. F., Kuwajima M., Foster D. W. Regulation of ketogenesis and the renaissance of carnitine palmitoyltransferase. Diabetes Metab Rev. 1989 May;5(3):271–284. doi: 10.1002/dmr.5610050305. [DOI] [PubMed] [Google Scholar]
  28. Oyake M., Onodera O., Shiroishi T., Takano H., Takahashi Y., Kominami R., Moriwaki K., Ikeuchi T., Igarashi S., Tanaka H. Molecular cloning of murine homologue dentatorubral-pallidoluysian atrophy (DRPLA) cDNA: strong conservation of a polymorphic CAG repeat in the murine gene. Genomics. 1997 Feb 15;40(1):205–207. doi: 10.1006/geno.1996.4522. [DOI] [PubMed] [Google Scholar]
  29. Prentki M., Corkey B. E. Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes. 1996 Mar;45(3):273–283. doi: 10.2337/diab.45.3.273. [DOI] [PubMed] [Google Scholar]
  30. RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
  31. Saggerson D., Ghadiminejad I., Awan M. Regulation of mitochondrial carnitine palmitoyl transferases from liver and extrahepatic tissues. Adv Enzyme Regul. 1992;32:285–306. doi: 10.1016/0065-2571(92)90023-s. [DOI] [PubMed] [Google Scholar]
  32. Student A. K., Hsu R. Y., Lane M. D. Induction of fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes. J Biol Chem. 1980 May 25;255(10):4745–4750. [PubMed] [Google Scholar]
  33. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Uenaka R., Kuwajima M., Ono A., Matsuzawa Y., Hayakawa J., Inohara N., Kagawa Y., Ohta S. Increased expression of carnitine palmitoyltransferase I gene is repressed by administering L-carnitine in the hearts of carnitine-deficient juvenile visceral steatosis mice. J Biochem. 1996 Mar;119(3):533–540. doi: 10.1093/oxfordjournals.jbchem.a021274. [DOI] [PubMed] [Google Scholar]
  35. Wang H., Kirkland J. L., Hollenberg C. H. Varying capacities for replication of rat adipocyte precursor clones and adipose tissue growth. J Clin Invest. 1989 May;83(5):1741–1746. doi: 10.1172/JCI114075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Weis B. C., Cowan A. T., Brown N., Foster D. W., McGarry J. D. Use of a selective inhibitor of liver carnitine palmitoyltransferase I (CPT I) allows quantification of its contribution to total CPT I activity in rat heart. Evidence that the dominant cardiac CPT I isoform is identical to the skeletal muscle enzyme. J Biol Chem. 1994 Oct 21;269(42):26443–26448. [PubMed] [Google Scholar]
  37. Weis B. C., Esser V., Foster D. W., McGarry J. D. Rat heart expresses two forms of mitochondrial carnitine palmitoyltransferase I. The minor component is identical to the liver enzyme. J Biol Chem. 1994 Jul 22;269(29):18712–18715. [PubMed] [Google Scholar]
  38. Woeltje K. F., Esser V., Weis B. C., Cox W. F., Schroeder J. G., Liao S. T., Foster D. W., McGarry J. D. Inter-tissue and inter-species characteristics of the mitochondrial carnitine palmitoyltransferase enzyme system. J Biol Chem. 1990 Jun 25;265(18):10714–10719. [PubMed] [Google Scholar]
  39. Woeltje K. F., Esser V., Weis B. C., Sen A., Cox W. F., McPhaul M. J., Slaughter C. A., Foster D. W., McGarry J. D. Cloning, sequencing, and expression of a cDNA encoding rat liver mitochondrial carnitine palmitoyltransferase II. J Biol Chem. 1990 Jun 25;265(18):10720–10725. [PubMed] [Google Scholar]
  40. Woeltje K. F., Kuwajima M., Foster D. W., McGarry J. D. Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. II. Use of detergents and antibodies. J Biol Chem. 1987 Jul 15;262(20):9822–9827. [PubMed] [Google Scholar]
  41. Xia Y., Buja L. M., McMillin J. B. Change in expression of heart carnitine palmitoyltransferase I isoforms with electrical stimulation of cultured rat neonatal cardiac myocytes. J Biol Chem. 1996 May 17;271(20):12082–12087. doi: 10.1074/jbc.271.20.12082. [DOI] [PubMed] [Google Scholar]
  42. Yamazaki N., Shinohara Y., Shima A., Terada H. High expression of a novel carnitine palmitoyltransferase I like protein in rat brown adipose tissue and heart: isolation and characterization of its cDNA clone. FEBS Lett. 1995 Apr 17;363(1-2):41–45. doi: 10.1016/0014-5793(95)00277-g. [DOI] [PubMed] [Google Scholar]
  43. Yamazaki N., Shinohara Y., Shima A., Yamanaka Y., Terada H. Isolation and characterization of cDNA and genomic clones encoding human muscle type carnitine palmitoyltransferase I. Biochim Biophys Acta. 1996 Jun 7;1307(2):157–161. doi: 10.1016/0167-4781(96)00069-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES