Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Oct 1;327(Pt 1):283–289. doi: 10.1042/bj3270283

Incorporation of copper into lysyl oxidase.

T Kosonen 1, J Y Uriu-Hare 1, M S Clegg 1, C L Keen 1, R B Rucker 1
PMCID: PMC1218792  PMID: 9355764

Abstract

Lysyl oxidase is a copper-dependent enzyme involved in extracellular processing of collagens and elastin. Although it is known that copper is essential for the functional activity of the enzyme, there is little information on the incorporation of copper. In the present study we examined the insertion of copper into lysyl oxidase using 67Cu in cell-free transcription/translation assays and in normal skin fibroblast culture systems. When a full-length lysyl oxidase cDNA was used as a template for transcription/translation reactions in vitro, unprocessed prolysyl oxidase appeared to bind copper. To examine further the post-translational incorporation of copper into lysyl oxidase, confluent skin fibroblasts were incubated with inhibitors of protein synthesis (cycloheximide, 10 microg/ml), glycosylation (tunicamycin, 10 microg/ml), protein secretion (brefeldin A, 10 microg/ml) and prolysyl oxidase processing (procollagen C-peptidase inhibitor, 2.5 microg/ml) together with 300 microCi of carrier-free 67Cu. It was observed that protein synthesis was a prerequisite for copper incorporation, but inhibition of glycosylation by tunicamycin did not affect the secretion of 67Cu as lysyl oxidase. Brefeldin A inhibited the secretion of 67Ci-labelled lysyl oxidase by 46%, but the intracellular incorporation of copper into lysyl oxidase was not affected. In addition, the inhibition of the extracellular proteolytic processing of prolysyl oxidase to lysyl oxidase had minimal effects on the secretion of protein-bound 67Cu. Our results indicate that, similar to caeruloplasmin processing [Sato and Gitlin (1991) J. Biol. Chem. 266, 5128-5134], copper is inserted into prolysyl oxidase independently of glycosylation.

Full Text

The Full Text of this article is available as a PDF (564.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Burbelo P. D., Kagan H. M., Chichester C. O. Immunological characterization of bovine lysyl oxidase. Comp Biochem Physiol B. 1985;81(4):845–849. doi: 10.1016/0305-0491(85)90077-x. [DOI] [PubMed] [Google Scholar]
  3. Chelly J., Tümer Z., Tønnesen T., Petterson A., Ishikawa-Brush Y., Tommerup N., Horn N., Monaco A. P. Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nat Genet. 1993 Jan;3(1):14–19. doi: 10.1038/ng0193-14. [DOI] [PubMed] [Google Scholar]
  4. Cronshaw A. D., Fothergill-Gilmore L. A., Hulmes D. J. The proteolytic processing site of the precursor of lysyl oxidase. Biochem J. 1995 Feb 15;306(Pt 1):279–284. doi: 10.1042/bj3060279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cronshaw A. D., MacBeath J. R., Shackleton D. R., Collins J. F., Fothergill-Gilmore L. A., Hulmes D. J. TRAMP (tyrosine rich acidic matrix protein), a protein that co-purifies with lysyl oxidase from porcine skin. Identification of TRAMP as the dermatan sulphate proteoglycan-associated 22K extracellular matrix protein. Matrix. 1993 May;13(3):255–266. doi: 10.1016/s0934-8832(11)80009-0. [DOI] [PubMed] [Google Scholar]
  6. Davis E. C., Mecham R. P. Selective degradation of accumulated secretory proteins in the endoplasmic reticulum. A possible clearance pathway for abnormal tropoelastin. J Biol Chem. 1996 Feb 16;271(7):3787–3794. [PubMed] [Google Scholar]
  7. Dierick H. A., Adam A. N., Escara-Wilke J. F., Glover T. W. Immunocytochemical localization of the Menkes copper transport protein (ATP7A) to the trans-Golgi network. Hum Mol Genet. 1997 Mar;6(3):409–416. doi: 10.1093/hmg/6.3.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Duksin D., Mahoney W. C. Relationship of the structure and biological activity of the natural homologues of tunicamycin. J Biol Chem. 1982 Mar 25;257(6):3105–3109. [PubMed] [Google Scholar]
  9. Forbes E. G., Cronshaw A. D., MacBeath J. R., Hulmes D. J. Tyrosine-rich acidic matrix protein (TRAMP) is a tyrosine-sulphated and widely distributed protein of the extracellular matrix. FEBS Lett. 1994 Sep 12;351(3):433–436. doi: 10.1016/0014-5793(94)00907-4. [DOI] [PubMed] [Google Scholar]
  10. Gacheru S., McGee C., Uriu-Hare J. Y., Kosonen T., Packman S., Tinker D., Krawetz S. A., Reiser K., Keen C. L., Rucker R. B. Expression and accumulation of lysyl oxidase, elastin, and type I procollagen in human Menkes and mottled mouse fibroblasts. Arch Biochem Biophys. 1993 Mar;301(2):325–329. doi: 10.1006/abbi.1993.1151. [DOI] [PubMed] [Google Scholar]
  11. Goldberg B., Taubman M. B., Radin A. Procollagen peptidase: its mode of action on the native substrate. Cell. 1975 Jan;4(1):45–50. doi: 10.1016/0092-8674(75)90132-4. [DOI] [PubMed] [Google Scholar]
  12. Harris E. D. Copper-induced activation of aortic lysyl oxidase in vivo. Proc Natl Acad Sci U S A. 1976 Feb;73(2):371–374. doi: 10.1073/pnas.73.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hojima Y., Behta B., Romanic A. M., Prockop D. J. Cleavage of type I procollagen by C- and N-proteinases is more rapid if the substrate is aggregated with dextran sulfate or polyethylene glycol. Anal Biochem. 1994 Dec;223(2):173–180. doi: 10.1006/abio.1994.1569. [DOI] [PubMed] [Google Scholar]
  14. Janes S. M., Mu D., Wemmer D., Smith A. J., Kaur S., Maltby D., Burlingame A. L., Klinman J. P. A new redox cofactor in eukaryotic enzymes: 6-hydroxydopa at the active site of bovine serum amine oxidase. Science. 1990 May 25;248(4958):981–987. doi: 10.1126/science.2111581. [DOI] [PubMed] [Google Scholar]
  15. Kagan H. M., Soucy D. M., Zoski C. G., Resnick R. J., Tang S. S. Multiple modes of catalysis-dependent inhibition and inactivation of aortic lysyl oxidase. Arch Biochem Biophys. 1983 Feb 15;221(1):158–167. doi: 10.1016/0003-9861(83)90132-7. [DOI] [PubMed] [Google Scholar]
  16. Kagan H. M., Sullivan K. A., Olsson T. A., 3rd, Cronlund A. L. Purification and properties of four species of lysyl oxidase from bovine aorta. Biochem J. 1979 Jan 1;177(1):203–214. doi: 10.1042/bj1770203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kagan H. M., Trackman P. C. Properties and function of lysyl oxidase. Am J Respir Cell Mol Biol. 1991 Sep;5(3):206–210. doi: 10.1165/ajrcmb/5.3.206. [DOI] [PubMed] [Google Scholar]
  18. Kaler S. G., Das S., Levinson B., Goldstein D. S., Holmes C. S., Patronas N. J., Packman S., Gahl W. A. Successful early copper therapy in Menkes disease associated with a mutant transcript containing a small In-frame deletion. Biochem Mol Med. 1996 Feb;57(1):37–46. doi: 10.1006/bmme.1996.0007. [DOI] [PubMed] [Google Scholar]
  19. Krebs C. J., Krawetz S. A. Lysyl oxidase copper-talon complex: a model. Biochim Biophys Acta. 1993 Sep 3;1202(1):7–12. doi: 10.1016/0167-4838(93)90056-w. [DOI] [PubMed] [Google Scholar]
  20. Kuivaniemi H. Partial characterization of lysyl oxidase from several human tissues. Biochem J. 1985 Sep 15;230(3):639–643. doi: 10.1042/bj2300639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Linder M. C., Hazegh-Azam M. Copper biochemistry and molecular biology. Am J Clin Nutr. 1996 May;63(5):797S–811S. doi: 10.1093/ajcn/63.5.797. [DOI] [PubMed] [Google Scholar]
  24. Lippincott-Schwartz J., Yuan L. C., Bonifacino J. S., Klausner R. D. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell. 1989 Mar 10;56(5):801–813. doi: 10.1016/0092-8674(89)90685-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mariani T. J., Trackman P. C., Kagan H. M., Eddy R. L., Shows T. B., Boyd C. D., Deak S. B. The complete derived amino acid sequence of human lysyl oxidase and assignment of the gene to chromosome 5 (extensive sequence homology with the murine ras recision gene). Matrix. 1992 Jun;12(3):242–248. [PubMed] [Google Scholar]
  26. Mercer J. F., Livingston J., Hall B., Paynter J. A., Begy C., Chandrasekharappa S., Lockhart P., Grimes A., Bhave M., Siemieniak D. Isolation of a partial candidate gene for Menkes disease by positional cloning. Nat Genet. 1993 Jan;3(1):20–25. doi: 10.1038/ng0193-20. [DOI] [PubMed] [Google Scholar]
  27. Nakamura N., Matsuzaki R., Choi Y. H., Tanizawa K., Sanders-Loehr J. Biosynthesis of topa quinone cofactor in bacterial amine oxidases. Solvent origin of C-2 oxygen determined by Raman spectroscopy. J Biol Chem. 1996 Mar 1;271(9):4718–4724. doi: 10.1074/jbc.271.9.4718. [DOI] [PubMed] [Google Scholar]
  28. Opsahl W., Zeronian H., Ellison M., Lewis D., Rucker R. B., Riggins R. S. Role of copper in collagen cross-linking and its influence on selected mechanical properties of chick bone and tendon. J Nutr. 1982 Apr;112(4):708–716. doi: 10.1093/jn/112.4.708. [DOI] [PubMed] [Google Scholar]
  29. Panchenko M. V., Stetler-Stevenson W. G., Trubetskoy O. V., Gacheru S. N., Kagan H. M. Metalloproteinase activity secreted by fibrogenic cells in the processing of prolysyl oxidase. Potential role of procollagen C-proteinase. J Biol Chem. 1996 Mar 22;271(12):7113–7119. doi: 10.1074/jbc.271.12.7113. [DOI] [PubMed] [Google Scholar]
  30. Rayton J. K., Harris E. D. Induction of lysyl oxidase with copper. Properties of an in vitro system. J Biol Chem. 1979 Feb 10;254(3):621–626. [PubMed] [Google Scholar]
  31. Reiser K. M., Crouch E. C., Chang K., Williamson J. R. Lysyl oxidase-mediated crosslinking in granulation tissue collagen in two models of hyperglycemia. Biochim Biophys Acta. 1991 Jul 26;1097(1):55–61. doi: 10.1016/0925-4439(91)90024-4. [DOI] [PubMed] [Google Scholar]
  32. Romero-Chapman N., Lee J., Tinker D., Uriu-Hare J. Y., Keen C. L., Rucker R. R. Purification, properties and influence of dietary copper on accumulation and functional activity of lysyl oxidase in rat skin. Biochem J. 1991 May 1;275(Pt 3):657–662. doi: 10.1042/bj2750657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rucker R. B., Romero-Chapman N., Wong T., Lee J., Steinberg F. M., McGee C., Clegg M. S., Reiser K., Kosonen T., Uriu-Hare J. Y. Modulation of lysyl oxidase by dietary copper in rats. J Nutr. 1996 Jan;126(1):51–60. doi: 10.1093/jn/126.1.51. [DOI] [PubMed] [Google Scholar]
  34. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sato M., Gitlin J. D. Mechanisms of copper incorporation during the biosynthesis of human ceruloplasmin. J Biol Chem. 1991 Mar 15;266(8):5128–5134. [PubMed] [Google Scholar]
  36. Shackleton D. R., Hulmes D. J. Purification of lysyl oxidase from piglet skin by selective interaction with Sephacryl S-200. Biochem J. 1990 Mar 15;266(3):917–919. [PMC free article] [PubMed] [Google Scholar]
  37. Svinarich D. M., Twomey T. A., Macauley S. P., Krebs C. J., Yang T. P., Krawetz S. A. Characterization of the human lysyl oxidase gene locus. J Biol Chem. 1992 Jul 15;267(20):14382–14387. [PubMed] [Google Scholar]
  38. Tang B. L., Low S. H., Hong W. Differential response of resident proteins and cycling proteins of the Golgi to brefeldin A. Eur J Cell Biol. 1995 Oct;68(2):199–205. [PubMed] [Google Scholar]
  39. Taubman M. B., Goldberg B. The processing of procollagen in cultures of human and mouse fibroblasts. Arch Biochem Biophys. 1976 Apr;173(2):490–494. doi: 10.1016/0003-9861(76)90286-1. [DOI] [PubMed] [Google Scholar]
  40. Tinker D., Rucker R. B. Role of selected nutrients in synthesis, accumulation, and chemical modification of connective tissue proteins. Physiol Rev. 1985 Jul;65(3):607–657. doi: 10.1152/physrev.1985.65.3.607. [DOI] [PubMed] [Google Scholar]
  41. Trackman P. C., Bedell-Hogan D., Tang J., Kagan H. M. Post-translational glycosylation and proteolytic processing of a lysyl oxidase precursor. J Biol Chem. 1992 Apr 25;267(12):8666–8671. [PubMed] [Google Scholar]
  42. Trackman P. C., Pratt A. M., Wolanski A., Tang S. S., Offner G. D., Troxler R. F., Kagan H. M. Cloning of rat aorta lysyl oxidase cDNA: complete codons and predicted amino acid sequence. Biochemistry. 1990 May 22;29(20):4863–4870. doi: 10.1021/bi00472a016. [DOI] [PubMed] [Google Scholar]
  43. Trackman P. C., Pratt A. M., Wolanski A., Tang S. S., Offner G. D., Troxler R. F., Kagan H. M. Cloning of rat aorta lysyl oxidase cDNA: complete codons and predicted amino acid sequence. Biochemistry. 1991 Aug 20;30(33):8282–8282. doi: 10.1021/bi00247a025. [DOI] [PubMed] [Google Scholar]
  44. Trackman P. C., Zoski C. G., Kagan H. M. Development of a peroxidase-coupled fluorometric assay for lysyl oxidase. Anal Biochem. 1981 May 15;113(2):336–342. doi: 10.1016/0003-2697(81)90086-5. [DOI] [PubMed] [Google Scholar]
  45. Vulpe C. D., Packman S. Cellular copper transport. Annu Rev Nutr. 1995;15:293–322. doi: 10.1146/annurev.nu.15.070195.001453. [DOI] [PubMed] [Google Scholar]
  46. Vulpe C., Levinson B., Whitney S., Packman S., Gitschier J. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet. 1993 Jan;3(1):7–13. doi: 10.1038/ng0193-7. [DOI] [PubMed] [Google Scholar]
  47. Wang S. X., Mure M., Medzihradszky K. F., Burlingame A. L., Brown D. E., Dooley D. M., Smith A. J., Kagan H. M., Klinman J. P. A crosslinked cofactor in lysyl oxidase: redox function for amino acid side chains. Science. 1996 Aug 23;273(5278):1078–1084. doi: 10.1126/science.273.5278.1078. [DOI] [PubMed] [Google Scholar]
  48. Yeh S. D., Shils M. E. Quantitive aspects of cycloheximide inhibition of amino acid incorporation. Biochem Pharmacol. 1969 Aug;18(8):1919–1926. doi: 10.1016/0006-2952(69)90287-1. [DOI] [PubMed] [Google Scholar]
  49. van Berkel P. H., Geerts M. E., van Veen H. A., Kooiman P. M., Pieper F. R., de Boer H. A., Nuijens J. H. Glycosylated and unglycosylated human lactoferrins both bind iron and show identical affinities towards human lysozyme and bacterial lipopolysaccharide, but differ in their susceptibilities towards tryptic proteolysis. Biochem J. 1995 Nov 15;312(Pt 1):107–114. doi: 10.1042/bj3120107. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES