Abstract
Mg-chelatase catalyses the insertion of Mg into protoporphyrin IX (Proto). This seemingly simple reaction also is potentially one of the most interesting and crucial steps in the (bacterio)chlorophyll (Bchl/Chl)-synthesis pathway, owing to its position at the branch-point between haem and Bchl/Chl synthesis. Up until the level of Proto, haem and Bchl/Chl synthesis share a common pathway. However, at the point of metal-ion insertion there are two choices: Mg2+ insertion to make Bchl/Chl (catalysed by Mg-chelatase) or Fe2+ insertion to make haem (catalysed by ferrochelatase). Thus the relative activities of Mg-chelatase and ferrochelatase must be regulated with respect to the organism's requirements for these end products. How is this regulation achieved? For Mg-chelatase, the recent design of an in vitro assay combined with the identification of Bchl-biosynthetic enzyme genes has now made it possible to address this question. In all photosynthetic organisms studied to date, Mg-chelatase is a three-component enzyme, and in several species these proteins have been cloned and expressed in an active form. The reaction takes place in two steps, with an ATP-dependent activation followed by an ATP-dependent chelation step. The activation step may be the key to regulation, although variations in subunit levels during diurnal growth may also play a role in determining the flux through the Bchl/Chl and haem branches of the pathway.
Full Text
The Full Text of this article is available as a PDF (644.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bauer C. E., Bird T. H. Regulatory circuits controlling photosynthesis gene expression. Cell. 1996 Apr 5;85(1):5–8. doi: 10.1016/s0092-8674(00)81074-0. [DOI] [PubMed] [Google Scholar]
- Bollivar D. W., Jiang Z. Y., Bauer C. E., Beale S. I. Heterologous expression of the bchM gene product from Rhodobacter capsulatus and demonstration that it encodes S-adenosyl-L-methionine:Mg-protoporphyrin IX methyltransferase. J Bacteriol. 1994 Sep;176(17):5290–5296. doi: 10.1128/jb.176.17.5290-5296.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bollivar D. W., Suzuki J. Y., Beatty J. T., Dobrowolski J. M., Bauer C. E. Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol. 1994 Apr 15;237(5):622–640. doi: 10.1006/jmbi.1994.1260. [DOI] [PubMed] [Google Scholar]
- Bult C. J., White O., Olsen G. J., Zhou L., Fleischmann R. D., Sutton G. G., Blake J. A., FitzGerald L. M., Clayton R. A., Gocayne J. D. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug 23;273(5278):1058–1073. doi: 10.1126/science.273.5278.1058. [DOI] [PubMed] [Google Scholar]
- Castelfranco P. A., Weinstein J. D., Schwarcz S., Pardo A. D., Wezelman B. E. The Mg insertion step in chlorophyll biosynthesis. Arch Biochem Biophys. 1979 Feb;192(2):592–598. doi: 10.1016/0003-9861(79)90130-9. [DOI] [PubMed] [Google Scholar]
- Coomber S. A., Chaudhri M., Connor A., Britton G., Hunter C. N. Localized transposon Tn5 mutagenesis of the photosynthetic gene cluster of Rhodobacter sphaeroides. Mol Microbiol. 1990 Jun;4(6):977–989. doi: 10.1111/j.1365-2958.1990.tb00670.x. [DOI] [PubMed] [Google Scholar]
- Debussche L., Couder M., Thibaut D., Cameron B., Crouzet J., Blanche F. Assay, purification, and characterization of cobaltochelatase, a unique complex enzyme catalyzing cobalt insertion in hydrogenobyrinic acid a,c-diamide during coenzyme B12 biosynthesis in Pseudomonas denitrificans. J Bacteriol. 1992 Nov;174(22):7445–7451. doi: 10.1128/jb.174.22.7445-7451.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douce R., Holtz R. B., Benson A. A. Isolation and properties of the envelope of spinach chloroplasts. J Biol Chem. 1973 Oct 25;248(20):7215–7222. [PubMed] [Google Scholar]
- Falbel T. G., Staehelin L. A. Characterization of a family of chlorophyll-deficient wheat (Triticum) and barley (Hordeum vulgare) mutants with defects in the magnesium-insertion step of chlorophyll biosynthesis. Plant Physiol. 1994 Feb;104(2):639–648. doi: 10.1104/pp.104.2.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuesler T. P., Wong Y. S., Castelfranco P. A. Localization of Mg-Chelatase and Mg-Protoporphyrin IX Monomethyl Ester (Oxidative) Cyclase Activities within Isolated, Developing Cucumber Chloroplasts. Plant Physiol. 1984 Jul;75(3):662–664. doi: 10.1104/pp.75.3.662. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson L. C., Marrison J. L., Leech R. M., Jensen P. E., Bassham D. C., Gibson M., Hunter C. N. A putative Mg chelatase subunit from Arabidopsis thaliana cv C24. Sequence and transcript analysis of the gene, import of the protein into chloroplasts, and in situ localization of the transcript and protein. Plant Physiol. 1996 May;111(1):61–71. doi: 10.1104/pp.111.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson L. C., Willows R. D., Kannangara C. G., von Wettstein D., Hunter C. N. Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1941–1944. doi: 10.1073/pnas.92.6.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldin B. R., Little H. N. Metalloporphyrin chelatase from barley. Biochim Biophys Acta. 1969 Feb 11;171(2):321–332. doi: 10.1016/0005-2744(69)90165-x. [DOI] [PubMed] [Google Scholar]
- Gorchein A. Control of magnesium-protoporphyrin chelatase activity in Rhodopseudomonas spheroides. Role of light, oxygen, and electron and energy transfer. Biochem J. 1973 Aug;134(4):833–845. doi: 10.1042/bj1340833d. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorchein A., Gibson L. C., Hunter C. N. Gene expression and control of enzymes for synthesis of magnesium protoporphyrin monomethyl ester in Rhodobacter sphaeroides. Biochem Soc Trans. 1993 May;21(2):201S–201S. doi: 10.1042/bst021201s. [DOI] [PubMed] [Google Scholar]
- Gorchein A. Magnesium protoporphyrin chelatase activity in Rhodopseudomonas spheroides. Studies with whole cells. Biochem J. 1972 Mar;127(1):97–106. doi: 10.1042/bj1270097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gough S. Defective synthesis of porphyrins in barley plastids caused by mutation in nuclear genes. Biochim Biophys Acta. 1972 Nov 24;286(1):36–54. doi: 10.1016/0304-4165(72)90086-4. [DOI] [PubMed] [Google Scholar]
- Halliwell B., Gutteridge J. M. The antioxidants of human extracellular fluids. Arch Biochem Biophys. 1990 Jul;280(1):1–8. doi: 10.1016/0003-9861(90)90510-6. [DOI] [PubMed] [Google Scholar]
- Hinchigeri S. B., Hundle B., Richards W. R. Demonstration that the BchH protein of Rhodobacter capsulatus activates S-adenosyl-L-methionine:magnesium protoporphyrin IX methyltransferase. FEBS Lett. 1997 May 5;407(3):337–342. doi: 10.1016/s0014-5793(97)00371-2. [DOI] [PubMed] [Google Scholar]
- Hudson A., Carpenter R., Doyle S., Coen E. S. Olive: a key gene required for chlorophyll biosynthesis in Antirrhinum majus. EMBO J. 1993 Oct;12(10):3711–3719. doi: 10.1002/j.1460-2075.1993.tb06048.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobs J. M., Jacobs N. J. Porphyrin Accumulation and Export by Isolated Barley (Hordeum vulgare) Plastids (Effect of Diphenyl Ether Herbicides). Plant Physiol. 1993 Apr;101(4):1181–1187. doi: 10.1104/pp.101.4.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobs J. M., Jacobs N. J. Terminal enzymes of heme biosynthesis in the plant plasma membrane. Arch Biochem Biophys. 1995 Nov 10;323(2):274–278. doi: 10.1006/abbi.1995.9964. [DOI] [PubMed] [Google Scholar]
- Jensen P. E., Gibson L. C., Henningsen K. W., Hunter C. N. Expression of the chlI, chlD, and chlH genes from the Cyanobacterium synechocystis PCC6803 in Escherichia coli and demonstration that the three cognate proteins are required for magnesium-protoporphyrin chelatase activity. J Biol Chem. 1996 Jul 12;271(28):16662–16667. doi: 10.1074/jbc.271.28.16662. [DOI] [PubMed] [Google Scholar]
- Jensen P. E., Willows R. D., Petersen B. L., Vothknecht U. C., Stummann B. M., Kannangara C. G., von Wettstein D., Henningsen K. W. Structural genes for Mg-chelatase subunits in barley: Xantha-f, -g and -h. Mol Gen Genet. 1996 Mar 7;250(4):383–394. doi: 10.1007/BF02174026. [DOI] [PubMed] [Google Scholar]
- Joyard J., Block M., Pineau B., Albrieux C., Douce R. Envelope membranes from mature spinach chloroplasts contain a NADPH:protochlorophyllide reductase on the cytosolic side of the outer membrane. J Biol Chem. 1990 Dec 15;265(35):21820–21827. [PubMed] [Google Scholar]
- Kannangara C. G., Vothknecht U. C., Hansson M., von Wettstein D. Magnesium chelatase: association with ribosomes and mutant complementation studies identify barley subunit Xantha-G as a functional counterpart of Rhodobacter subunit BchD. Mol Gen Genet. 1997 Mar 18;254(1):85–92. doi: 10.1007/s004380050394. [DOI] [PubMed] [Google Scholar]
- Koncz C., Mayerhofer R., Koncz-Kalman Z., Nawrath C., Reiss B., Redei G. P., Schell J. Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana. EMBO J. 1990 May;9(5):1337–1346. doi: 10.1002/j.1460-2075.1990.tb08248.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koonin E. V. A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication. Nucleic Acids Res. 1993 Jun 11;21(11):2541–2547. doi: 10.1093/nar/21.11.2541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koonin E. V. Evidence for a family of archaeal ATPases. Science. 1997 Mar 7;275(5305):1489–1490. doi: 10.1126/science.275.5305.1489. [DOI] [PubMed] [Google Scholar]
- Köhler S., Delwiche C. F., Denny P. W., Tilney L. G., Webster P., Wilson R. J., Palmer J. D., Roos D. S. A plastid of probable green algal origin in Apicomplexan parasites. Science. 1997 Mar 7;275(5305):1485–1489. doi: 10.1126/science.275.5305.1485. [DOI] [PubMed] [Google Scholar]
- Lee H. J., Ball M. D., Parham R., Rebeiz C. A. Chloroplast Biogenesis 65 : Enzymic Conversion of Protoporphyrin IX to Mg-Protoporphyrin IX in a Subplastidic Membrane Fraction of Cucumber Etiochloroplasts. Plant Physiol. 1992 Jul;99(3):1134–1140. doi: 10.1104/pp.99.3.1134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maizel J. V., Jr, Lenk R. P. Enhanced graphic matrix analysis of nucleic acid and protein sequences. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7665–7669. doi: 10.1073/pnas.78.12.7665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marrs B. Mobilization of the genes for photosynthesis from Rhodopseudomonas capsulata by a promiscuous plasmid. J Bacteriol. 1981 Jun;146(3):1003–1012. doi: 10.1128/jb.146.3.1003-1012.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matringe M., Camadro J. M., Block M. A., Joyard J., Scalla R., Labbe P., Douce R. Localization within chloroplasts of protoporphyrinogen oxidase, the target enzyme for diphenylether-like herbicides. J Biol Chem. 1992 Mar 5;267(7):4646–4651. [PubMed] [Google Scholar]
- Matringe M., Camadro J. M., Joyard J., Douce R. Localization of ferrochelatase activity within mature pea chloroplasts. J Biol Chem. 1994 May 27;269(21):15010–15015. [PubMed] [Google Scholar]
- Nakayama M., Masuda T., Sato N., Yamagata H., Bowler C., Ohta H., Shioi Y., Takamiya K. Cloning, subcellular localization and expression of CHL1, a subunit of magnesium-chelatase in soybean. Biochem Biophys Res Commun. 1995 Oct 4;215(1):422–428. doi: 10.1006/bbrc.1995.2481. [DOI] [PubMed] [Google Scholar]
- Nicholson-Guthrie C. S., Guthrie G. D. Accumulation of protoporphyrin-IX by the chlorophyll-less y-y mutant of Chlamydomonas reinhardtii. Arch Biochem Biophys. 1987 Feb 1;252(2):570–573. doi: 10.1016/0003-9861(87)90064-6. [DOI] [PubMed] [Google Scholar]
- Orsat B., Monfort A., Chatellard P., Stutz E. Mapping and sequencing of an actively transcribed Euglena gracilis chloroplast gene (ccsA) homologous to the Arabidopsis thaliana nuclear gene cs(ch-42). FEBS Lett. 1992 Jun 1;303(2-3):181–184. doi: 10.1016/0014-5793(92)80514-h. [DOI] [PubMed] [Google Scholar]
- Pardo A. D., Chereskin B. M., Castelfranco P. A., Franceschi V. R., Wezelman B. E. ATP requirement for mg chelatase in developing chloroplasts. Plant Physiol. 1980 May;65(5):956–960. doi: 10.1104/pp.65.5.956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pineau B., Gerard-Hirne C., Douce R., Joyard J. Identification of the Main Species of Tetrapyrrolic Pigments in Envelope Membranes from Spinach Chloroplasts. Plant Physiol. 1993 Jul;102(3):821–828. doi: 10.1104/pp.102.3.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pontoppidan B., Kannangara C. G. Purification and partial characterisation of barley glutamyl-tRNA(Glu) reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. Eur J Biochem. 1994 Oct 15;225(2):529–537. doi: 10.1111/j.1432-1033.1994.00529.x. [DOI] [PubMed] [Google Scholar]
- Reinbothe S., Reinbothe C. Regulation of Chlorophyll Biosynthesis in Angiosperms. Plant Physiol. 1996 May;111(1):1–7. doi: 10.1104/pp.111.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reinbothe S., Reinbothe C. The regulation of enzymes involved in chlorophyll biosynthesis. Eur J Biochem. 1996 Apr 15;237(2):323–343. doi: 10.1111/j.1432-1033.1996.00323.x. [DOI] [PubMed] [Google Scholar]
- Reinbothe S., Runge S., Reinbothe C., van Cleve B., Apel K. Substrate-dependent transport of the NADPH:protochlorophyllide oxidoreductase into isolated plastids. Plant Cell. 1995 Feb;7(2):161–172. doi: 10.1105/tpc.7.2.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roper J. M., Smith A. G. Molecular localisation of ferrochelatase in higher plant chloroplasts. Eur J Biochem. 1997 May 15;246(1):32–37. doi: 10.1111/j.1432-1033.1997.t01-1-00032.x. [DOI] [PubMed] [Google Scholar]
- Rubin B. B., Rotstein O. D., Lukacs G., Bailey D., Romaschin A., Walker P. M. Decreased leukocyte adhesion with anti-CD18 monoclonal antibodies is mediated by receptor internalization. Surgery. 1992 Aug;112(2):263–269. [PubMed] [Google Scholar]
- Runge S., van Cleve B., Lebedev N., Armstrong G., Apel K. Isolation and classification of chlorophyll-deficient xantha mutants of Arabidopsis thaliana. Planta. 1995;197(3):490–500. doi: 10.1007/BF00196671. [DOI] [PubMed] [Google Scholar]
- Thomas J., Weinstein J. D. Measurement of heme efflux and heme content in isolated developing chloroplasts. Plant Physiol. 1990 Nov;94(3):1414–1423. doi: 10.1104/pp.94.3.1414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker C. J., Weinstein J. D. Further characterization of the magnesium chelatase in isolated developing cucumber chloroplasts : substrate specificity, regulation, intactness, and ATP requirements. Plant Physiol. 1991 Apr;95(4):1189–1196. doi: 10.1104/pp.95.4.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker C. J., Weinstein J. D. In vitro assay of the chlorophyll biosynthetic enzyme Mg-chelatase: resolution of the activity into soluble and membrane-bound fractions. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5789–5793. doi: 10.1073/pnas.88.13.5789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker C. J., Weinstein J. D. The magnesium-insertion step of chlorophyll biosynthesis is a two-stage reaction. Biochem J. 1994 Apr 1;299(Pt 1):277–284. doi: 10.1042/bj2990277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang W. Y., Wang W. L., Boynton J. E., Gillham N. W. Genetic control of chlorophyll biosynthesis in Chlamydomonas. Analysis of mutants at two loci mediating the conversion of protoporphyrin-IX to magnesium protoporphyrin. J Cell Biol. 1974 Dec;63(3):806–823. doi: 10.1083/jcb.63.3.806. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willows R. D., Gibson L. C., Kanangara C. G., Hunter C. N., von Wettstein D. Three separate proteins constitute the magnesium chelatase of Rhodobacter sphaeroides. Eur J Biochem. 1996 Jan 15;235(1-2):438–443. doi: 10.1111/j.1432-1033.1996.00438.x. [DOI] [PubMed] [Google Scholar]
- Yang Z. M., Bauer C. E. Rhodobacter capsulatus genes involved in early steps of the bacteriochlorophyll biosynthetic pathway. J Bacteriol. 1990 Sep;172(9):5001–5010. doi: 10.1128/jb.172.9.5001-5010.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]