Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Oct 15;327(Pt 2):363–368. doi: 10.1042/bj3270363

Fatty acid signals in Bacillus megaterium are attenuated by cytochrome P-450-mediated hydroxylation.

N English 1, C N Palmer 1, W L Alworth 1, L Kang 1, V Hughes 1, C R Wolf 1
PMCID: PMC1218802  PMID: 9359402

Abstract

In previous publications [English, Hughes and Wolf (1994) J. Biol. Chem. 269, 26836-26841; English, Hughes and Wolf (1996) Biochem. J. 316, 279-283], we have demonstrated that peroxisome proliferators and non-steroidal anti-inflammatory drugs are inducers of the cytochrome P-450BM-3 gene in Bacillus megaterium ATCC14581. Their mechanism of action involves binding to and subsequent displacement of the transcriptional repressor, Bm3R1, from its operator site, which results in the activation of cytochrome P-450BM-3 gene transcription. We now present evidence that the branched-chain fatty acid, phytanic acid, is a potent inducer of cytochrome P-450BM-3. We have also observed that phytanic acid and peroxisome proliferators are inducers of Bm3R1 protein accumulation and associated DNA-binding activity. In contrast, several barbiturates, although capable of inducing cytochrome P-450BM-3 and Bm3R1 gene transcription, were unable to induce the Bm3R1 protein. We also demonstrate that cytochrome P-450BM-3 readily oxidizes phytanic acid, and provide evidence that, although the omega-1 hydroxy acid derivatives of phytanic acid can associate with Bm3R1, they do so with an affinity two orders of magnitude lower than the unmodified fatty acid. As a consequence, the ability of the hydroxylated product to induce cytochrome P-450BM-3 gene expression in vivo is markedly reduced. These data collectively suggest that metabolism of fatty acids by cytochrome P-450BM-3 leads to an attenuation of their ability to activate the transcription of the BM-3 operon. This work places the action of bacterial fatty acid hydroxylases in an autoregulatory loop where they may be responsible for the inactivation or clearance of the inducing fatty acid signal.

Full Text

The Full Text of this article is available as a PDF (442.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Black S. D., Linger M. H., Freck L. C., Kazemi S., Galbraith J. A. Affinity isolation and characterization of cytochrome P450 102 (BM-3) from barbiturate-induced Bacillus megaterium. Arch Biochem Biophys. 1994 Apr;310(1):126–133. doi: 10.1006/abbi.1994.1148. [DOI] [PubMed] [Google Scholar]
  2. Capdevila J. H., Wei S., Helvig C., Falck J. R., Belosludtsev Y., Truan G., Graham-Lorence S. E., Peterson J. A. The highly stereoselective oxidation of polyunsaturated fatty acids by cytochrome P450BM-3. J Biol Chem. 1996 Sep 13;271(37):22663–22671. doi: 10.1074/jbc.271.37.22663. [DOI] [PubMed] [Google Scholar]
  3. Devchand P. R., Keller H., Peters J. M., Vazquez M., Gonzalez F. J., Wahli W. The PPARalpha-leukotriene B4 pathway to inflammation control. Nature. 1996 Nov 7;384(6604):39–43. doi: 10.1038/384039a0. [DOI] [PubMed] [Google Scholar]
  4. English N., Hughes V., Wolf C. R. Common pathways of cytochrome P450 gene regulation by peroxisome proliferators and barbiturates in Bacillus megaterium ATCC14581. J Biol Chem. 1994 Oct 28;269(43):26836–26841. [PubMed] [Google Scholar]
  5. English N., Hughes V., Wolf C. R. Induction of cytochrome P-450 BM-3 (CYP 102) by non-steroidal anti-inflammatory drugs in Bacillus megaterium. Biochem J. 1996 May 15;316(Pt 1):279–283. doi: 10.1042/bj3160279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fulco A. J. P450BM-3 and other inducible bacterial P450 cytochromes: biochemistry and regulation. Annu Rev Pharmacol Toxicol. 1991;31:177–203. doi: 10.1146/annurev.pa.31.040191.001141. [DOI] [PubMed] [Google Scholar]
  7. GRELET N. Le déterminisme de la sporulation de Bacillus megatherium. 1. L'effet de l'épuisement de l'aliment carboné en milieu synthétique. Ann Inst Pasteur (Paris) 1951 Oct;81(4):430–440. [PubMed] [Google Scholar]
  8. Göttlicher M., Widmark E., Li Q., Gustafsson J. A. Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4653–4657. doi: 10.1073/pnas.89.10.4653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. He J. S., Ruettinger R. T., Liu H. M., Fulco A. J. Molecular cloning, coding nucleotides and the deduced amino acid sequence of P-450BM-1 from Bacillus megaterium. Biochim Biophys Acta. 1989 Dec 22;1009(3):301–303. doi: 10.1016/0167-4781(89)90120-6. [DOI] [PubMed] [Google Scholar]
  10. Keller H., Dreyer C., Medin J., Mahfoudi A., Ozato K., Wahli W. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2160–2164. doi: 10.1073/pnas.90.6.2160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kitareewan S., Burka L. T., Tomer K. B., Parker C. E., Deterding L. J., Stevens R. D., Forman B. M., Mais D. E., Heyman R. A., McMorris T. Phytol metabolites are circulating dietary factors that activate the nuclear receptor RXR. Mol Biol Cell. 1996 Aug;7(8):1153–1166. doi: 10.1091/mbc.7.8.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lemotte P. K., Keidel S., Apfel C. M. Phytanic acid is a retinoid X receptor ligand. Eur J Biochem. 1996 Feb 15;236(1):328–333. doi: 10.1111/j.1432-1033.1996.00328.x. [DOI] [PubMed] [Google Scholar]
  15. Lewis A. D., Hickson I. D., Robson C. N., Harris A. L., Hayes J. D., Griffiths S. A., Manson M. M., Hall A. E., Moss J. E., Wolf C. R. Amplification and increased expression of alpha class glutathione S-transferase-encoding genes associated with resistance to nitrogen mustards. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8511–8515. doi: 10.1073/pnas.85.22.8511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lock E. A., Mitchell A. M., Elcombe C. R. Biochemical mechanisms of induction of hepatic peroxisome proliferation. Annu Rev Pharmacol Toxicol. 1989;29:145–163. doi: 10.1146/annurev.pa.29.040189.001045. [DOI] [PubMed] [Google Scholar]
  17. OMURA T., SATO R. A new cytochrome in liver microsomes. J Biol Chem. 1962 Apr;237:1375–1376. [PubMed] [Google Scholar]
  18. Palmer C. N., Hsu M. H., Griffin H. J., Johnson E. F. Novel sequence determinants in peroxisome proliferator signaling. J Biol Chem. 1995 Jul 7;270(27):16114–16121. doi: 10.1074/jbc.270.27.16114. [DOI] [PubMed] [Google Scholar]
  19. Palmer C. N., Hsu M. H., Muerhoff A. S., Griffin K. J., Johnson E. F. Interaction of the peroxisome proliferator-activated receptor alpha with the retinoid X receptor alpha unmasks a cryptic peroxisome proliferator response element that overlaps an ARP-1-binding site in the CYP4A6 promoter. J Biol Chem. 1994 Jul 8;269(27):18083–18089. [PubMed] [Google Scholar]
  20. Ruettinger R. T., Wen L. P., Fulco A. J. Coding nucleotide, 5' regulatory, and deduced amino acid sequences of P-450BM-3, a single peptide cytochrome P-450:NADPH-P-450 reductase from Bacillus megaterium. J Biol Chem. 1989 Jul 5;264(19):10987–10995. [PubMed] [Google Scholar]
  21. Schwalb H., Narhi L. O., Fulco A. J. Purification and characterization of pentobarbital-induced cytochrome P-450BM-1 from Bacillus megaterium ATCC 14581. Biochim Biophys Acta. 1985 Mar 8;838(3):302–311. doi: 10.1016/0304-4165(85)90227-2. [DOI] [PubMed] [Google Scholar]
  22. Shaw G. C., Fulco A. J. Barbiturate-mediated regulation of expression of the cytochrome P450BM-3 gene of Bacillus megaterium by Bm3R1 protein. J Biol Chem. 1992 Mar 15;267(8):5515–5526. [PubMed] [Google Scholar]
  23. Shaw G. C., Fulco A. J. Inhibition by barbiturates of the binding of Bm3R1 repressor to its operator site on the barbiturate-inducible cytochrome P450BM-3 gene of Bacillus megaterium. J Biol Chem. 1993 Feb 5;268(4):2997–3004. [PubMed] [Google Scholar]
  24. Strauch M. A., de Mendoza D., Hoch J. A. cis-unsaturated fatty acids specifically inhibit a signal-transducing protein kinase required for initiation of sporulation in Bacillus subtilis. Mol Microbiol. 1992 Oct;6(20):2909–2917. doi: 10.1111/j.1365-2958.1992.tb01750.x. [DOI] [PubMed] [Google Scholar]
  25. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wen L. P., Fulco A. J. Cloning of the gene encoding a catalytically self-sufficient cytochrome P-450 fatty acid monooxygenase induced by barbiturates in Bacillus megaterium and its functional expression and regulation in heterologous (Escherichia coli) and homologous (Bacillus megaterium) hosts. J Biol Chem. 1987 May 15;262(14):6676–6682. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES