Abstract
Activation of the respiratory burst imposes acute metabolic demands on phagocytic cells. These are met by mobilizing internal energy stores and by increasing the utilization of exogenous energy, including glucose in the circulation. To determine whether the increased glucose uptake that is known to be associated with the respiratory burst involves the regulation of glucose transporter molecules, the intrinsic transport properties of glucose transporters on the macrophage cell line RAW 264.7 were determined after activation with PMA, N-formyl-methionine-leucine-phenylalanine (fMLP) and the cytokines granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin 3 (IL-3). Treatment with PMA resulted in a 2-fold increase in respiratory burst activity within 10 min; this was associated with a 30-50% increase in 2-deoxyglucose uptake and a 4-fold increase in transporter affinity for glucose. Similarly, fMLP, GM-CSF and IL-3 treatments stimulated 2-deoxyglucose uptake that was associated with a 3-4-fold increase in transporter affinity for glucose. To determine whether the changes observed in 2-deoxyglucose uptake in response to PMA, fMLP and growth factors were influenced by phosphorylation of the sugar, 3-O-methylglucose, which is not phosphorylated, was used. Increased 3-O-methylglucose uptake and increased transporter affinity for glucose were also observed after PMA, fMLP and GM-CSF treatments. Whereas both fMLP and GM-CSF stimulated superoxide production, IL-3 failed to activate respiratory burst activity. The protein kinase inhibitors genistein and staurosporine inhibited the increase in 2-deoxyglucose uptake observed with fMLP and GM-CSF, and partly reversed the affinity increase towards that of untreated control cells. In contrast, the phosphatidylinositol 3-kinase inhibitor wortmannin had little effect on 2-deoxyglucose uptake in response to these activators. Western blotting with subtype-specific antisera showed that Glut-3 was the predominant transporter on RAW 264.7 cells. These studies demonstrate that acute regulation of glucose transporters occurs in response to activators that promote respiratory burst activity, and show that this regulation involves both tyrosine kinases and protein kinase C activity.
Full Text
The Full Text of this article is available as a PDF (344.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babior B. M. The respiratory burst of phagocytes. J Clin Invest. 1984 Mar;73(3):599–601. doi: 10.1172/JCI111249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnett J. E., Holman G. D., Munday K. A. Structural requirements for binding to the sugar-transport system of the human erythrocyte. Biochem J. 1973 Feb;131(2):211–221. doi: 10.1042/bj1310211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barros L. F., Marchant R. B., Baldwin S. A. Dissection of stress-activated glucose transport from insulin-induced glucose transport in mammalian cells using wortmannin and ML-9. Biochem J. 1995 Aug 1;309(Pt 3):731–736. doi: 10.1042/bj3090731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bashan N., Burdett E., Hundal H. S., Klip A. Regulation of glucose transport and GLUT1 glucose transporter expression by O2 in muscle cells in culture. Am J Physiol. 1992 Mar;262(3 Pt 1):C682–C690. doi: 10.1152/ajpcell.1992.262.3.C682. [DOI] [PubMed] [Google Scholar]
- Bell G. I., Burant C. F., Takeda J., Gould G. W. Structure and function of mammalian facilitative sugar transporters. J Biol Chem. 1993 Sep 15;268(26):19161–19164. [PubMed] [Google Scholar]
- Berridge M. V., Horsfield J. A., Tan A. S. Evidence that cell survival is controlled by interleukin-3 independently of cell proliferation. J Cell Physiol. 1995 Jun;163(3):466–476. doi: 10.1002/jcp.1041630306. [DOI] [PubMed] [Google Scholar]
- Berridge M. V., Tan A. S., Hilton C. J. Cyclic adenosine monophosphate promotes cell survival and retards apoptosis in a factor-dependent bone marrow-derived cell line. Exp Hematol. 1993 Feb;21(2):269–276. [PubMed] [Google Scholar]
- Berridge M. V., Tan A. S. Interleukin-3 facilitates glucose transport in a myeloid cell line by regulating the affinity of the glucose transporter for glucose: involvement of protein phosphorylation in transporter activation. Biochem J. 1995 Feb 1;305(Pt 3):843–851. doi: 10.1042/bj3050843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berridge M. V., Tan A. S., McCoy K. D., Kansara M., Rudert F. CD95 (Fas/Apo-1)-induced apoptosis results in loss of glucose transporter function. J Immunol. 1996 Jun 1;156(11):4092–4099. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Carruthers A. Facilitated diffusion of glucose. Physiol Rev. 1990 Oct;70(4):1135–1176. doi: 10.1152/physrev.1990.70.4.1135. [DOI] [PubMed] [Google Scholar]
- Chakrabarti R., Jung C. Y., Lee T. P., Liu H., Mookerjee B. K. Changes in glucose transport and transporter isoforms during the activation of human peripheral blood lymphocytes by phytohemagglutinin. J Immunol. 1994 Mar 15;152(6):2660–2668. [PubMed] [Google Scholar]
- Cushman S. W., Wardzala L. J. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem. 1980 May 25;255(10):4758–4762. [PubMed] [Google Scholar]
- DeChatelet L. R., Lees C. J., Walsh C. E., Long G. D., Shirley P. S. Comparison of the calcium ionophore and phorbol myristate acetate on the initiation of the respiratory burst in human neutrophils. Infect Immun. 1982 Dec;38(3):969–974. doi: 10.1128/iai.38.3.969-974.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeChatelet L. R., Shirley P. S., Johnston R. B., Jr Effect of phorbol myristate acetate on the oxidative metabolism of human polymorphonuclear leukocytes. Blood. 1976 Apr;47(4):545–554. [PubMed] [Google Scholar]
- Diamond D. L., Carruthers A. Metabolic control of sugar transport by derepression of cell surface glucose transporters. An insulin-independent recruitment-independent mechanism of regulation. J Biol Chem. 1993 Mar 25;268(9):6437–6444. [PubMed] [Google Scholar]
- Ding D. X., Rivas C. I., Heaney M. L., Raines M. A., Vera J. C., Golde D. W. The alpha subunit of the human granulocyte-macrophage colony-stimulating factor receptor signals for glucose transport via a phosphorylation-independent pathway. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2537–2541. doi: 10.1073/pnas.91.7.2537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Estrada D. E., Elliott E., Zinman B., Poon I., Liu Z., Klip A., Daneman D. Regulation of glucose transport and expression of GLUT3 transporters in human circulating mononuclear cells: studies in cells from insulin-dependent diabetic and nondiabetic individuals. Metabolism. 1994 May;43(5):591–598. doi: 10.1016/0026-0495(94)90201-1. [DOI] [PubMed] [Google Scholar]
- Fischbarg J., Cheung M., Czegledy F., Li J., Iserovich P., Kuang K., Hubbard J., Garner M., Rosen O. M., Golde D. W. Evidence that facilitative glucose transporters may fold as beta-barrels. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11658–11662. doi: 10.1073/pnas.90.24.11658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher M. D., Frost S. C. Translocation of GLUT1 does not account for elevated glucose transport in glucose-deprived 3T3-L1 adipocytes. J Biol Chem. 1996 May 17;271(20):11806–11809. doi: 10.1074/jbc.271.20.11806. [DOI] [PubMed] [Google Scholar]
- Gould G. W., Holman G. D. The glucose transporter family: structure, function and tissue-specific expression. Biochem J. 1993 Oct 15;295(Pt 2):329–341. doi: 10.1042/bj2950329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graff J. C., Wohlhueter R. M., Plagemann P. G. Deoxyglucose and 3-O-methylglucose transport in untreated and ATP-depleted Novikoff rat hepatoma cells. Analysis by a rapid kinetic technique, relationship to phosphorylation and effects of inhibitors. J Cell Physiol. 1978 Aug;96(2):171–188. doi: 10.1002/jcp.1040960206. [DOI] [PubMed] [Google Scholar]
- Hamilton J. A., Vairo G., Lingelbach S. R. Activation and proliferation signals in murine macrophages: stimulation of glucose uptake by hemopoietic growth factors and other agents. J Cell Physiol. 1988 Mar;134(3):405–412. doi: 10.1002/jcp.1041340311. [DOI] [PubMed] [Google Scholar]
- Harrison S. A., Buxton J. M., Clancy B. M., Czech M. P. Evidence that erythroid-type glucose transporter intrinsic activity is modulated by cadmium treatment of mouse 3T3-L1 cells. J Biol Chem. 1991 Oct 15;266(29):19438–19449. [PubMed] [Google Scholar]
- Harrison S. A., Buxton J. M., Czech M. P. Suppressed intrinsic catalytic activity of GLUT1 glucose transporters in insulin-sensitive 3T3-L1 adipocytes. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7839–7843. doi: 10.1073/pnas.88.17.7839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrison S. A., Clancy B. M., Pessino A., Czech M. P. Activation of cell surface glucose transporters measured by photoaffinity labeling of insulin-sensitive 3T3-L1 adipocytes. J Biol Chem. 1992 Feb 25;267(6):3783–3788. [PubMed] [Google Scholar]
- Kiyotaki C., Peisach J., Bloom B. R. Oxygen metabolism in cloned macrophage cell lines: glucose dependence of superoxide production, metabolic and spectral analysis. J Immunol. 1984 Feb;132(2):857–866. [PubMed] [Google Scholar]
- Kletzien R. F., Perdue J. F. Sugar transport in chick embryo fibroblasts. I. A functional change in the plasma membrane associated with the rate of cell growth. J Biol Chem. 1974 Jun 10;249(11):3366–3374. [PubMed] [Google Scholar]
- Kletzien R. F., Perdue J. F. Sugar transport in chick embryo fibroblasts. II. Alterations in transport following transformation by a temperature-sensitive mutant of the Rous sarcoma virus. J Biol Chem. 1974 Jun 10;249(11):3375–3382. [PubMed] [Google Scholar]
- Lachaal M., Berenski C. J., Kim J., Jung C. Y. An ATP-modulated specific association of glyceraldehyde-3-phosphate dehydrogenase with human erythrocyte glucose transporter. J Biol Chem. 1990 Sep 15;265(26):15449–15454. [PubMed] [Google Scholar]
- Lachaal M., Jung C. Y. Interaction of facilitative glucose transporter with glucokinase and its modulation by ADP and glucose-6-phosphate. J Cell Physiol. 1993 Aug;156(2):326–332. doi: 10.1002/jcp.1041560215. [DOI] [PubMed] [Google Scholar]
- Liu H., Xiong S., Shi Y., Samuel S. J., Lachaal M., Jung C. Y. ATP-sensitive binding of a 70-kDa cytosolic protein to the glucose transporter in rat adipocytes. J Biol Chem. 1995 Apr 7;270(14):7869–7875. doi: 10.1074/jbc.270.14.7869. [DOI] [PubMed] [Google Scholar]
- Mantych G. J., James D. E., Chung H. D., Devaskar S. U. Cellular localization and characterization of Glut 3 glucose transporter isoform in human brain. Endocrinology. 1992 Sep;131(3):1270–1278. doi: 10.1210/endo.131.3.1505464. [DOI] [PubMed] [Google Scholar]
- Nefesh I., Bauskin A. R., Alkalay I., Golembo M., Ben-Neriah Y. IL-3 facilitates lymphocyte hexose transport by enhancing the intrinsic activity of the transport system. Int Immunol. 1991 Aug;3(8):827–831. doi: 10.1093/intimm/3.8.827. [DOI] [PubMed] [Google Scholar]
- Pagliaro L., Taylor D. L. 2-Deoxyglucose and cytochalasin D modulate aldolase mobility in living 3T3 cells. J Cell Biol. 1992 Aug;118(4):859–863. doi: 10.1083/jcb.118.4.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pasternak C. A., Aiyathurai J. E., Makinde V., Davies A., Baldwin S. A., Konieczko E. M., Widnell C. C. Regulation of glucose uptake by stressed cells. J Cell Physiol. 1991 Nov;149(2):324–331. doi: 10.1002/jcp.1041490221. [DOI] [PubMed] [Google Scholar]
- Pedley K. C., Jones G. E., Magnani M., Rist R. J., Naftalin R. J. Direct observation of hexokinase translocation in stimulated macrophages. Biochem J. 1993 Apr 15;291(Pt 2):515–522. doi: 10.1042/bj2910515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pratt S. E., Colby-Germinario S., Manuel S., Germinario R. J. Evidence that modulation of glucose transporter intrinsic activity is the mechanism involved in the allose-mediated depression of hexose transport in mammalian cells. J Cell Physiol. 1994 Dec;161(3):580–588. doi: 10.1002/jcp.1041610322. [DOI] [PubMed] [Google Scholar]
- Renner E. D., Plagemann P. G., Bernlohr R. W. Permeation of glucose by simple and facilitated diffusion by Novikoff rat hepatoma cells in suspension culture and its relationship to glucose metabolism. J Biol Chem. 1972 Sep 25;247(18):5765–5776. [PubMed] [Google Scholar]
- Rist R. J., Jones G. E., Naftalin R. J. Effects of macrophage colony-stimulating factor and phorbol myristate acetate on 2-D-deoxyglucose transport and superoxide production in rat peritoneal macrophages. Biochem J. 1991 Aug 15;278(Pt 1):119–128. doi: 10.1042/bj2780119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shetty M., Loeb J. N., Vikstrom K., Ismail-Beigi F. Rapid activation of GLUT-1 glucose transporter following inhibition of oxidative phosphorylation in clone 9 cells. J Biol Chem. 1993 Aug 15;268(23):17225–17232. [PubMed] [Google Scholar]
- Shi Y., Liu H., Vanderburg G., Samuel S. J., Ismail-Beigi F., Jung C. Y. Modulation of GLUT1 intrinsic activity in clone 9 cells by inhibition of oxidative phosphorylation. J Biol Chem. 1995 Sep 15;270(37):21772–21778. doi: 10.1074/jbc.270.37.21772. [DOI] [PubMed] [Google Scholar]
- Suzuki K., Kono T. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc Natl Acad Sci U S A. 1980 May;77(5):2542–2545. doi: 10.1073/pnas.77.5.2542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toyoda N., Flanagan J. E., Kono T. Reassessment of insulin effects on the Vmax and Km values of hexose transport in isolated rat epididymal adipocytes. J Biol Chem. 1987 Feb 25;262(6):2737–2745. [PubMed] [Google Scholar]
- Vera J. C., Reyes A. M., Cárcamo J. G., Velásquez F. V., Rivas C. I., Zhang R. H., Strobel P., Iribarren R., Scher H. I., Slebe J. C. Genistein is a natural inhibitor of hexose and dehydroascorbic acid transport through the glucose transporter, GLUT1. J Biol Chem. 1996 Apr 12;271(15):8719–8724. doi: 10.1074/jbc.271.15.8719. [DOI] [PubMed] [Google Scholar]
- White M. K., Bramwell M. E., Harris H. Kinetic parameters of hexose transport in hybrids between malignant and nonmalignant cells. J Cell Sci. 1983 Jul;62:49–80. doi: 10.1242/jcs.62.1.49. [DOI] [PubMed] [Google Scholar]
- Whitesell R. R., Abumrad N. A. Increased affinity predominates in insulin stimulation of glucose transport in the adipocyte. J Biol Chem. 1985 Mar 10;260(5):2894–2899. [PubMed] [Google Scholar]