Abstract
Erythropoietin (EPO) is the major hormone regulating the proliferation of erythroid precursors and their differentiation into erythrocytes. Ligand binding to the erythropoietin receptor (EPO-R), a member of the cytokine receptor family, triggers Tyr phosphorylation of the surface form of the receptor, presumably mediated by the Janus kinase (JAK) 2. To study whether non-surface EPO-R can be phosphorylated, Ba/F3 cells stably transfected with EPO-R were treated with pervanadate (PV), which is widely used as a potent tool to inhibit cellular protein Tyr phosphatases, thus resulting in enhanced Tyr phosphorylation of cellular proteins. PV treatment caused the EPO-R to undergo Tyr phosphorylation in a time-dependent and dose-dependent manner. PV-mediated Tyr phosphorylation of EPO-R occurred at several intracellular sites including the endoplasmic reticulum (ER), because both endoglycosidase H (endo H)-resistant EPO-R and the ER-retained EPO-R mutant (DeltaWS1 EPO-R) were Tyr phosphorylated in response to PV. Moreover, in metabolic labelling experiments, endo H-sensitive EPO-R was also phosphorylated. The phosphorylated fraction accounted for only 30-50% of the newly synthesized EPO-R, the fraction that normally exits from the ER. Tyr phosphorylation could not be detected on proteolytic fragments of the EPO-R, suggesting that this is a highly regulated process. Unlike the wild-type (wt) EPO-R, which was phosphorylated both on EPO binding and after inhibition of Tyr phosphatases by PV treatment, an EPO-R mutant (W282R EPO-R) that does not activate JAK2 was phosphorylated after PV treatment but not by EPO binding. Both EPO-R and JAK2 were phosphorylated with similar kinetics by PV treatment, suggesting that JAK2, as well as protein Tyr kinases different from JAK2, might mediate PV-dependent EPO-R phosphorylation. Furthermore the Tyr-phosphorylated ER-retained EPO-R mutant DeltaWS1 co-immunoprecipitated with JAK2 kinase, indicating that the EPO-R might interact with JAK2 while in the ER.
Full Text
The Full Text of this article is available as a PDF (363.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson S. M., Jorgensen B. Activation of src-related tyrosine kinases by IL-3. J Immunol. 1995 Aug 15;155(4):1660–1670. [PubMed] [Google Scholar]
- Bauskin A. R., Alkalay I., Ben-Neriah Y. Redox regulation of a protein tyrosine kinase in the endoplasmic reticulum. Cell. 1991 Aug 23;66(4):685–696. doi: 10.1016/0092-8674(91)90114-e. [DOI] [PubMed] [Google Scholar]
- Bevan A. P., Drake P. G., Yale J. F., Shaver A., Posner B. I. Peroxovanadium compounds: biological actions and mechanism of insulin-mimesis. Mol Cell Biochem. 1995 Dec 6;153(1-2):49–58. doi: 10.1007/BF01075918. [DOI] [PubMed] [Google Scholar]
- Cosman D. The hematopoietin receptor superfamily. Cytokine. 1993 Mar;5(2):95–106. doi: 10.1016/1043-4666(93)90047-9. [DOI] [PubMed] [Google Scholar]
- D'Andrea A. D., Lodish H. F., Wong G. G. Expression cloning of the murine erythropoietin receptor. Cell. 1989 Apr 21;57(2):277–285. doi: 10.1016/0092-8674(89)90965-3. [DOI] [PubMed] [Google Scholar]
- Evans G. A., Garcia G. G., Erwin R., Howard O. M., Farrar W. L. Pervanadate simulates the effects of interleukin-2 (IL-2) in human T cells and provides evidence for the activation of two distinct tyrosine kinase pathways by IL-2. J Biol Chem. 1994 Sep 23;269(38):23407–23412. [PubMed] [Google Scholar]
- Fantus I. G., Kadota S., Deragon G., Foster B., Posner B. I. Pervanadate [peroxide(s) of vanadate] mimics insulin action in rat adipocytes via activation of the insulin receptor tyrosine kinase. Biochemistry. 1989 Oct 31;28(22):8864–8871. doi: 10.1021/bi00448a027. [DOI] [PubMed] [Google Scholar]
- Frangioni J. V., Beahm P. H., Shifrin V., Jost C. A., Neel B. G. The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell. 1992 Feb 7;68(3):545–560. doi: 10.1016/0092-8674(92)90190-n. [DOI] [PubMed] [Google Scholar]
- Guan K. L., Dixon J. E. Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science. 1990 Aug 3;249(4968):553–556. doi: 10.1126/science.2166336. [DOI] [PubMed] [Google Scholar]
- Heffetz D., Bushkin I., Dror R., Zick Y. The insulinomimetic agents H2O2 and vanadate stimulate protein tyrosine phosphorylation in intact cells. J Biol Chem. 1990 Feb 15;265(5):2896–2902. [PubMed] [Google Scholar]
- Heffetz D., Rutter W. J., Zick Y. The insulinomimetic agents H2O2 and vanadate stimulate tyrosine phosphorylation of potential target proteins for the insulin receptor kinase in intact cells. Biochem J. 1992 Dec 1;288(Pt 2):631–635. doi: 10.1042/bj2880631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilton D. J., Watowich S. S., Murray P. J., Lodish H. F. Increased cell surface expression and enhanced folding in the endoplasmic reticulum of a mutant erythropoietin receptor. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):190–194. doi: 10.1073/pnas.92.1.190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klingmüller U., Bergelson S., Hsiao J. G., Lodish H. F. Multiple tyrosine residues in the cytosolic domain of the erythropoietin receptor promote activation of STAT5. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8324–8328. doi: 10.1073/pnas.93.16.8324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klingmüller U., Lorenz U., Cantley L. C., Neel B. G., Lodish H. F. Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell. 1995 Mar 10;80(5):729–738. doi: 10.1016/0092-8674(95)90351-8. [DOI] [PubMed] [Google Scholar]
- Li J. P., D'Andrea A. D., Lodish H. F., Baltimore D. Activation of cell growth by binding of Friend spleen focus-forming virus gp55 glycoprotein to the erythropoietin receptor. Nature. 1990 Feb 22;343(6260):762–764. doi: 10.1038/343762a0. [DOI] [PubMed] [Google Scholar]
- Linnekin D., Evans G. A., D'Andrea A., Farrar W. L. Association of the erythropoietin receptor with protein tyrosine kinase activity. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6237–6241. doi: 10.1073/pnas.89.14.6237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linnekin D., Evans G., Michiel D., Farrar W. L. Characterization of a 97-kDa phosphotyrosylprotein regulated by multiple cytokines. J Biol Chem. 1992 Nov 25;267(33):23993–23998. [PubMed] [Google Scholar]
- Lotti L. V., Lanfrancone L., Migliaccio E., Zompetta C., Pelicci G., Salcini A. E., Falini B., Pelicci P. G., Torrisi M. R. Sch proteins are localized on endoplasmic reticulum membranes and are redistributed after tyrosine kinase receptor activation. Mol Cell Biol. 1996 May;16(5):1946–1954. doi: 10.1128/mcb.16.5.1946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miura O., Cleveland J. L., Ihle J. N. Inactivation of erythropoietin receptor function by point mutations in a region having homology with other cytokine receptors. Mol Cell Biol. 1993 Mar;13(3):1788–1795. doi: 10.1128/mcb.13.3.1788. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miura O., Miura Y., Nakamura N., Quelle F. W., Witthuhn B. A., Ihle J. N., Aoki N. Induction of tyrosine phosphorylation of Vav and expression of Pim-1 correlates with Jak2-mediated growth signaling from the erythropoietin receptor. Blood. 1994 Dec 15;84(12):4135–4141. [PubMed] [Google Scholar]
- Miura O., Nakamura N., Quelle F. W., Witthuhn B. A., Ihle J. N., Aoki N. Erythropoietin induces association of the JAK2 protein tyrosine kinase with the erythropoietin receptor in vivo. Blood. 1994 Sep 1;84(5):1501–1507. [PubMed] [Google Scholar]
- Miura Y., Miura O., Ihle J. N., Aoki N. Activation of the mitogen-activated protein kinase pathway by the erythropoietin receptor. J Biol Chem. 1994 Nov 25;269(47):29962–29969. [PubMed] [Google Scholar]
- Neumann D., Wikström L., Watowich S. S., Lodish H. F. Intermediates in degradation of the erythropoietin receptor accumulate and are degraded in lysosomes. J Biol Chem. 1993 Jun 25;268(18):13639–13649. [PubMed] [Google Scholar]
- O'Shea J. J., McVicar D. W., Bailey T. L., Burns C., Smyth M. J. Activation of human peripheral blood T lymphocytes by pharmacological induction of protein-tyrosine phosphorylation. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10306–10310. doi: 10.1073/pnas.89.21.10306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Odai H., Sasaki K., Iwamatsu A., Hanazono Y., Tanaka T., Mitani K., Yazaki Y., Hirai H. The proto-oncogene product c-Cbl becomes tyrosine phosphorylated by stimulation with GM-CSF or Epo and constitutively binds to the SH3 domain of Grb2/Ash in human hematopoietic cells. J Biol Chem. 1995 May 5;270(18):10800–10805. doi: 10.1074/jbc.270.18.10800. [DOI] [PubMed] [Google Scholar]
- Posner B. I., Faure R., Burgess J. W., Bevan A. P., Lachance D., Zhang-Sun G., Fantus I. G., Ng J. B., Hall D. A., Lum B. S. Peroxovanadium compounds. A new class of potent phosphotyrosine phosphatase inhibitors which are insulin mimetics. J Biol Chem. 1994 Feb 11;269(6):4596–4604. [PubMed] [Google Scholar]
- Rodríguez-Liñares B., Watson S. P. Phosphorylation of JAK2 in thrombin-stimulated human platelets. FEBS Lett. 1994 Oct 3;352(3):335–338. doi: 10.1016/0014-5793(94)00983-x. [DOI] [PubMed] [Google Scholar]
- Rouse J., Cohen P., Trigon S., Morange M., Alonso-Llamazares A., Zamanillo D., Hunt T., Nebreda A. R. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell. 1994 Sep 23;78(6):1027–1037. doi: 10.1016/0092-8674(94)90277-1. [DOI] [PubMed] [Google Scholar]
- Sawada T., Tsuda H., Kawakita M., Takatsuki K. Rapid protein tyrosine phosphorylation selectively induced in murine responsive ELM-I-1 cells by erythropoietin. Exp Hematol. 1992 Jun;20(5):629–632. [PubMed] [Google Scholar]
- Sawyer S. T., Hankins W. D. The functional form of the erythropoietin receptor is a 78-kDa protein: correlation with cell surface expression, endocytosis, and phosphorylation. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6849–6853. doi: 10.1073/pnas.90.14.6849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Secrist J. P., Burns L. A., Karnitz L., Koretzky G. A., Abraham R. T. Stimulatory effects of the protein tyrosine phosphatase inhibitor, pervanadate, on T-cell activation events. J Biol Chem. 1993 Mar 15;268(8):5886–5893. [PubMed] [Google Scholar]
- Showers M. O., Moreau J. F., Linnekin D., Druker B., D'Andrea A. D. Activation of the erythropoietin receptor by the Friend spleen focus-forming virus gp55 glycoprotein induces constitutive protein tyrosine phosphorylation. Blood. 1992 Dec 15;80(12):3070–3078. [PubMed] [Google Scholar]
- Tourkine N., Schindler C., Larose M., Houdebine L. M. Activation of STAT factors by prolactin, interferon-gamma, growth hormones, and a tyrosine phosphatase inhibitor in rabbit primary mammary epithelial cells. J Biol Chem. 1995 Sep 8;270(36):20952–20961. doi: 10.1074/jbc.270.36.20952. [DOI] [PubMed] [Google Scholar]
- Wakao H., Harada N., Kitamura T., Mui A. L., Miyajima A. Interleukin 2 and erythropoietin activate STAT5/MGF via distinct pathways. EMBO J. 1995 Jun 1;14(11):2527–2535. doi: 10.1002/j.1460-2075.1995.tb07250.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watowich S. S., Hilton D. J., Lodish H. F. Activation and inhibition of erythropoietin receptor function: role of receptor dimerization. Mol Cell Biol. 1994 Jun;14(6):3535–3549. doi: 10.1128/mcb.14.6.3535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Witthuhn B. A., Quelle F. W., Silvennoinen O., Yi T., Tang B., Miura O., Ihle J. N. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell. 1993 Jul 30;74(2):227–236. doi: 10.1016/0092-8674(93)90414-l. [DOI] [PubMed] [Google Scholar]
- Yoshimura A., D'Andrea A. D., Lodish H. F. Friend spleen focus-forming virus glycoprotein gp55 interacts with the erythropoietin receptor in the endoplasmic reticulum and affects receptor metabolism. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4139–4143. doi: 10.1073/pnas.87.11.4139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshimura A., Lodish H. F. In vitro phosphorylation of the erythropoietin receptor and an associated protein, pp130. Mol Cell Biol. 1992 Feb;12(2):706–715. doi: 10.1128/mcb.12.2.706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshimura A., Zimmers T., Neumann D., Longmore G., Yoshimura Y., Lodish H. F. Mutations in the Trp-Ser-X-Trp-Ser motif of the erythropoietin receptor abolish processing, ligand binding, and activation of the receptor. J Biol Chem. 1992 Jun 5;267(16):11619–11625. [PubMed] [Google Scholar]
- Youssoufian H., Longmore G., Neumann D., Yoshimura A., Lodish H. F. Structure, function, and activation of the erythropoietin receptor. Blood. 1993 May 1;81(9):2223–2236. [PubMed] [Google Scholar]
- Zhao Z., Tan Z., Diltz C. D., You M., Fischer E. H. Activation of mitogen-activated protein (MAP) kinase pathway by pervanadate, a potent inhibitor of tyrosine phosphatases. J Biol Chem. 1996 Sep 6;271(36):22251–22255. doi: 10.1074/jbc.271.36.22251. [DOI] [PubMed] [Google Scholar]