Abstract
In this work, the characterization of endoprotease (EP) isoenzymes in peroxisomes is reported for the first time in cell organelles purified from pea leaves (Pisum sativum L.). A comparative analysis of the endo-proteolytic activity in peroxisomes purified from young (15-day-old) and senescent (50-day-old) leaves was carried out. Peroxisomes purified from senescent leaves showed a much higher endo-proteolytic activity than organelles from young plants. A 16 h incubation with exogenous substrates was the threshold time for the detection of a linear increase in the endo-proteolytic activity of peroxisomes from senescent leaves. Three EP isoenzymes (EP2, EP4 and EP5), having molecular masses of 88, 64 and 50 kDa respectively, were found in young plants by using SDS/polyacrylamide-gradient gels co-polymerized with gelatin. However, four additional isoenzymes (EP1, EP3, EP6 and EP7), with molecular masses of 220, 76, 46 and 34 kDa respectively, were detected in senescent plants. All the isoenzymes detected in peroxisomes from both young and senescent leaves were neutral proteases. By using different class-specific inhibitors, the electrophoretically separated EP isoenzymes were characterized as three serine-proteinases (EP1, EP3 and EP4), two cysteine-proteinases (EP2 and EP6) and a metallo-proteinase (EP7), and EP5 might be a metal-dependent serine-proteinase. Moreover, a peroxisomal polypeptide of 64 kDa was recognized by an antibody against a thiol-protease. The serine-proteinase isoenzymes (EP1, EP3 and EP4), which represent approx. 70% of the total EP activity of peroxisomes, showed a notable thermal stability, not being inhibited by incubation at 50 degrees C for 1 h.
Full Text
The Full Text of this article is available as a PDF (402.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adamska I., Lindahl M., Roobol-Bóza M., Andersson B. Degradation of the light-stress protein is mediated by an ATP-independent, serine-type protease under low-light conditions. Eur J Biochem. 1996 Mar 1;236(2):591–599. doi: 10.1111/j.1432-1033.1996.00591.x. [DOI] [PubMed] [Google Scholar]
- Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126. doi: 10.1016/s0076-6879(84)05016-3. [DOI] [PubMed] [Google Scholar]
- Authier F., Bergeron J. J., Ou W. J., Rachubinski R. A., Posner B. I., Walton P. A. Degradation of the cleaved leader peptide of thiolase by a peroxisomal proteinase. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3859–3863. doi: 10.1073/pnas.92.9.3859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bond J. S., Butler P. E. Intracellular proteases. Annu Rev Biochem. 1987;56:333–364. doi: 10.1146/annurev.bi.56.070187.002001. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Carrasco P., Carbonell J. Changes in the Level of Peptidase Activities in Pea Ovaries during Senescence and Fruit Set Induced by Gibberellic Acid. Plant Physiol. 1990 Apr;92(4):1070–1074. doi: 10.1104/pp.92.4.1070. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casano L. M., Desimone M., Trippi V. S. Proteolytic Activity at Alkaline pH in Oat Leaves, Isolation of an Aminopeptidase. Plant Physiol. 1989 Dec;91(4):1414–1418. doi: 10.1104/pp.91.4.1414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corpas F. J., Palma J. M., del Río L. A. Evidence for the presence of proteolytic activity in peroxisomes. Eur J Cell Biol. 1993 Jun;61(1):81–85. [PubMed] [Google Scholar]
- Gietl C., Wimmer B., Adamec J., Kalousek F. A cysteine endopeptidase isolated from castor bean endosperm microbodies processes the glyoxysomal malate dehydrogenase precursor protein. Plant Physiol. 1997 Mar;113(3):863–871. doi: 10.1104/pp.113.3.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gray R. W., Arsenis C., Jeffay H. Neutral protease activity associated with the rat liver peroxisomal fraction. Biochim Biophys Acta. 1970 Dec 29;222(3):627–636. doi: 10.1016/0304-4165(70)90189-3. [DOI] [PubMed] [Google Scholar]
- Heussen C., Dowdle E. B. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem. 1980 Feb;102(1):196–202. doi: 10.1016/0003-2697(80)90338-3. [DOI] [PubMed] [Google Scholar]
- Huffaker R. C. Proteolytic activity during senescence of plants. New Phytol. 1990;116:199–231. doi: 10.1111/j.1469-8137.1990.tb04710.x. [DOI] [PubMed] [Google Scholar]
- Komov V. P., Strelkova M. A., Makeeva A. L. Issledovanie neitral'noi proteinazy v peroksisomakh kletok pecheni krys. Biokhimiia. 1988 Sep;53(9):1532–1538. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Larcher G., Cimon B., Symoens F., Tronchin G., Chabasse D., Bouchara J. P. A 33 kDa serine proteinase from Scedosporium apiospermum. Biochem J. 1996 Apr 1;315(Pt 1):119–126. doi: 10.1042/bj3150119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leshem Y. Y. Plant senescence processes and free radicals. Free Radic Biol Med. 1988;5(1):39–49. doi: 10.1016/0891-5849(88)90060-3. [DOI] [PubMed] [Google Scholar]
- Michaud D., Faye L., Yelle S. Electrophoretic analysis of plant cysteine and serine proteinases using gelatin-containing polyacrylamide gels and class-specific proteinase inhibitors. Electrophoresis. 1993 Jan-Feb;14(1-2):94–98. doi: 10.1002/elps.1150140117. [DOI] [PubMed] [Google Scholar]
- Mitsuhashi W., Minamikawa T. Synthesis and Posttranslational Activation of Sulfhydryl-Endopeptidase in Cotyledons of Germinating Vigna mungo Seeds. Plant Physiol. 1989 Jan;89(1):274–279. doi: 10.1104/pp.89.1.274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morita S., Fukase M., Hoshino K., Fukuda Y., Yamaguchi M., Morita Y. A serine protease in soybean seeds that acts specifically on the native alpha subunit of beta-conglycinin. Plant Cell Physiol. 1994 Oct;35(7):1049–1056. [PubMed] [Google Scholar]
- Osteryoung K. W., Sticher L., Jones R. L., Bennett A. B. In vitro processing of tomato proteinase inhibitor I by barley microsomal membranes: a system for analysis of cotranslational processing of plant endomembrane proteins. Plant Physiol. 1992 Jun;99(2):378–382. doi: 10.1104/pp.99.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pastori G. M., Del Rio L. A. Natural Senescence of Pea Leaves (An Activated Oxygen-Mediated Function for Peroxisomes). Plant Physiol. 1997 Feb;113(2):411–418. doi: 10.1104/pp.113.2.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poulle M., Jones B. L. A Proteinase from Germinating Barley : I. Purification and Some Physical Properties of a 30 kD Cysteine Endoproteinase from Green Malt. Plant Physiol. 1988 Dec;88(4):1454–1460. doi: 10.1104/pp.88.4.1454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qi X., Wilson K. A., Tan-Wilson A. L. Characterization of the Major Protease Involved in the Soybean beta-Conglycinin Storage Protein Mobilization. Plant Physiol. 1992 Jun;99(2):725–733. doi: 10.1104/pp.99.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strother S. The role of free radicals in leaf senescence. Gerontology. 1988;34(3):151–156. doi: 10.1159/000212945. [DOI] [PubMed] [Google Scholar]
- Tolbert N. E. Metabolic pathways in peroxisomes and glyoxysomes. Annu Rev Biochem. 1981;50:133–157. doi: 10.1146/annurev.bi.50.070181.001025. [DOI] [PubMed] [Google Scholar]
- Vierstra R. D. Proteolysis in plants: mechanisms and functions. Plant Mol Biol. 1996 Oct;32(1-2):275–302. doi: 10.1007/BF00039386. [DOI] [PubMed] [Google Scholar]
- Wrobel R., Jones B. L. Appearance of Endoproteolytic Enzymes during the Germination of Barley. Plant Physiol. 1992 Nov;100(3):1508–1516. doi: 10.1104/pp.100.3.1508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- del Río L. A., Palma J. M., Sandalio L. M., Corpas F. J., Pastori G. M., Bueno P., López-Huertas E. Peroxisomes as a source of superoxide and hydrogen peroxide in stressed plants. Biochem Soc Trans. 1996 May;24(2):434–438. doi: 10.1042/bst0240434. [DOI] [PubMed] [Google Scholar]
- del Río L. A., Sandalio L. M., Palma J. M., Bueno P., Corpas F. J. Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radic Biol Med. 1992 Nov;13(5):557–580. doi: 10.1016/0891-5849(92)90150-f. [DOI] [PubMed] [Google Scholar]
- van den Bosch H., Schutgens R. B., Wanders R. J., Tager J. M. Biochemistry of peroxisomes. Annu Rev Biochem. 1992;61:157–197. doi: 10.1146/annurev.bi.61.070192.001105. [DOI] [PubMed] [Google Scholar]
- van der Valk H. C., van Loon L. C. Subcellular Localization of Proteases in Developing Leaves of Oats (Avena sativa L.). Plant Physiol. 1988 Jun;87(2):536–541. doi: 10.1104/pp.87.2.536. [DOI] [PMC free article] [PubMed] [Google Scholar]