Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Oct 15;327(Pt 2):413–417. doi: 10.1042/bj3270413

An additional mechanism of ribosome-inactivating protein cytotoxicity: degradation of extrachromosomal DNA.

E Nicolas 1, I D Goodyer 1, T F Taraschi 1
PMCID: PMC1218809  PMID: 9359409

Abstract

Inhibition of protein synthesis by cleavage of the N-glycosidic bond of a specific adenine of 28 S rRNA has been accepted as the mechanism by which plant ribosome-inactivating proteins (RIPs) cause cytotoxicity. The cytotoxic action of gelonin on Plasmodium falciparum malaria parasites appears to occur by a different mechanism. Parasite intoxication, which is manifested by mitochondrial dysfunction and lack of nucleic acid synthesis in the erythrocytic cycle following exposure to the toxin, is caused by the elimination of the parasite 6 kb extrachromosomal (mitochondrial) DNA. This is the first report which demonstrates that the DNA-damaging activities of RIPs observed in vitro can contribute to their cytotoxicity.

Full Text

The Full Text of this article is available as a PDF (332.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbieri L., Battelli M. G., Stirpe F. Ribosome-inactivating proteins from plants. Biochim Biophys Acta. 1993 Dec 21;1154(3-4):237–282. doi: 10.1016/0304-4157(93)90002-6. [DOI] [PubMed] [Google Scholar]
  2. Barbieri L., Gorini P., Valbonesi P., Castiglioni P., Stirpe F. Unexpected activity of saporins. Nature. 1994 Dec 15;372(6507):624–624. doi: 10.1038/372624a0. [DOI] [PubMed] [Google Scholar]
  3. Barbieri L., Valbonesi P., Bonora E., Gorini P., Bolognesi A., Stirpe F. Polynucleotide:adenosine glycosidase activity of ribosome-inactivating proteins: effect on DNA, RNA and poly(A). Nucleic Acids Res. 1997 Feb 1;25(3):518–522. doi: 10.1093/nar/25.3.518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barbieri L., Valbonesi P., Gorini P., Pession A., Stirpe F. Polynucleotide: adenosine glycosidase activity of saporin-L1: effect on DNA, RNA and poly(A). Biochem J. 1996 Oct 15;319(Pt 2):507–513. doi: 10.1042/bj3190507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boix E., Wu Y., Vasandani V. M., Saxena S. K., Ardelt W., Ladner J., Youle R. J. Role of the N terminus in RNase A homologues: differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity. J Mol Biol. 1996 Apr 19;257(5):992–1007. doi: 10.1006/jmbi.1996.0218. [DOI] [PubMed] [Google Scholar]
  6. Brinkmann U., Pastan I. Immunotoxins against cancer. Biochim Biophys Acta. 1994 May 27;1198(1):27–45. doi: 10.1016/0304-419x(94)90004-3. [DOI] [PubMed] [Google Scholar]
  7. Divo A. A., Geary T. G., Jensen J. B., Ginsburg H. The mitochondrion of Plasmodium falciparum visualized by rhodamine 123 fluorescence. J Protozool. 1985 Aug;32(3):442–446. doi: 10.1111/j.1550-7408.1985.tb04041.x. [DOI] [PubMed] [Google Scholar]
  8. Endo Y., Mitsui K., Motizuki M., Tsurugi K. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J Biol Chem. 1987 Apr 25;262(12):5908–5912. [PubMed] [Google Scholar]
  9. Feagin J. E., Drew M. E. Plasmodium falciparum: alterations in organelle transcript abundance during the erythrocytic cycle. Exp Parasitol. 1995 May;80(3):430–440. doi: 10.1006/expr.1995.1055. [DOI] [PubMed] [Google Scholar]
  10. Feagin J. E. The extrachromosomal DNAs of apicomplexan parasites. Annu Rev Microbiol. 1994;48:81–104. doi: 10.1146/annurev.mi.48.100194.000501. [DOI] [PubMed] [Google Scholar]
  11. Fry M., Pudney M. Site of action of the antimalarial hydroxynaphthoquinone, 2-[trans-4-(4'-chlorophenyl) cyclohexyl]-3-hydroxy-1,4-naphthoquinone (566C80). Biochem Pharmacol. 1992 Apr 1;43(7):1545–1553. doi: 10.1016/0006-2952(92)90213-3. [DOI] [PubMed] [Google Scholar]
  12. Gardner M. J., Feagin J. E., Moore D. J., Spencer D. F., Gray M. W., Williamson D. H., Wilson R. J. Organisation and expression of small subunit ribosomal RNA genes encoded by a 35-kilobase circular DNA in Plasmodium falciparum. Mol Biochem Parasitol. 1991 Sep;48(1):77–88. doi: 10.1016/0166-6851(91)90166-4. [DOI] [PubMed] [Google Scholar]
  13. Go T. T., Yeung H. W., Fong W. P. Deoxyribonucleolytic activity of alpha- and beta-momorcharins. Life Sci. 1992;51(17):1347–1353. doi: 10.1016/0024-3205(92)90634-2. [DOI] [PubMed] [Google Scholar]
  14. Gormley J. A., Howard R. J., Taraschi T. F. Trafficking of malarial proteins to the host cell cytoplasm and erythrocyte surface membrane involves multiple pathways. J Cell Biol. 1992 Dec;119(6):1481–1495. doi: 10.1083/jcb.119.6.1481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Huang P. L., Chen H. C., Kung H. F., Huang P. L., Huang P., Huang H. I., Lee-Huang S. Anti-HIV plant proteins catalyze topological changes of DNA into inactive forms. Biofactors. 1992 Dec;4(1):37–41. [PubMed] [Google Scholar]
  16. Ittarat I., Asawamahasakda W., Meshnick S. R. The effects of antimalarials on the Plasmodium falciparum dihydroorotate dehydrogenase. Exp Parasitol. 1994 Aug;79(1):50–56. doi: 10.1006/expr.1994.1058. [DOI] [PubMed] [Google Scholar]
  17. Kahn J. O., Gorelick K. J., Gatti G., Arri C. J., Lifson J. D., Gambertoglio J. G., Bostrom A., Williams R. Safety, activity, and pharmacokinetics of GLQ223 in patients with AIDS and AIDS-related complex. Antimicrob Agents Chemother. 1994 Feb;38(2):260–267. doi: 10.1128/aac.38.2.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kiatfuengfoo R., Suthiphongchai T., Prapunwattana P., Yuthavong Y. Mitochondria as the site of action of tetracycline on Plasmodium falciparum. Mol Biochem Parasitol. 1989 May 1;34(2):109–115. doi: 10.1016/0166-6851(89)90002-9. [DOI] [PubMed] [Google Scholar]
  19. Lafleur M. V., Woldhuis J., Loman H. Some characteristics of apurinic sites in single- and double-stranded biologically active phi X174 DNA. Nucleic Acids Res. 1981 Dec 11;9(23):6591–6599. doi: 10.1093/nar/9.23.6591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee-Huang S., Huang P. L., Chen H. C., Huang P. L., Bourinbaiar A., Huang H. I., Kung H. F. Anti-HIV and anti-tumor activities of recombinant MAP30 from bitter melon. Gene. 1995 Aug 19;161(2):151–156. doi: 10.1016/0378-1119(95)00186-a. [DOI] [PubMed] [Google Scholar]
  21. Lee-Huang S., Huang P. L., Huang P. L., Bourinbaiar A. S., Chen H. C., Kung H. F. Inhibition of the integrase of human immunodeficiency virus (HIV) type 1 by anti-HIV plant proteins MAP30 and GAP31. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8818–8822. doi: 10.1073/pnas.92.19.8818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lee-Huang S., Kung H. F., Huang P. L., Bourinbaiar A. S., Morell J. L., Brown J. H., Huang P. L., Tsai W. P., Chen A. Y., Huang H. I. Human immunodeficiency virus type 1 (HIV-1) inhibition, DNA-binding, RNA-binding, and ribosome inactivation activities in the N-terminal segments of the plant anti-HIV protein GAP31. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12208–12212. doi: 10.1073/pnas.91.25.12208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Li M. X., Yeung H. W., Pan L. P., Chan S. I. Trichosanthin, a potent HIV-1 inhibitor, can cleave supercoiled DNA in vitro. Nucleic Acids Res. 1991 Nov 25;19(22):6309–6312. doi: 10.1093/nar/19.22.6309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lindahl T., Andersson A. Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid. Biochemistry. 1972 Sep 12;11(19):3618–3623. doi: 10.1021/bi00769a019. [DOI] [PubMed] [Google Scholar]
  25. Ling J., Li X., Wu X., Liu W. Topological requirements for recognition and cleavage of DNA by ribosome-inactivating proteins. Biol Chem Hoppe Seyler. 1995 Nov;376(11):637–641. doi: 10.1515/bchm3.1995.376.11.637. [DOI] [PubMed] [Google Scholar]
  26. Ling J., Liu W. Y., Wang T. P. Cleavage of supercoiled double-stranded DNA by several ribosome-inactivating proteins in vitro. FEBS Lett. 1994 May 30;345(2-3):143–146. doi: 10.1016/0014-5793(94)00421-8. [DOI] [PubMed] [Google Scholar]
  27. Ling J., Liu W. Y., Wang T. P. Simultaneous existence of two types of ribosome-inactivating proteins in the seeds of Cinnamonum camphora--characterization of the enzymatic activities of these cytotoxic proteins. Biochim Biophys Acta. 1995 Sep 27;1252(1):15–22. doi: 10.1016/0167-4838(95)00052-v. [DOI] [PubMed] [Google Scholar]
  28. McGrath M. S., Hwang K. M., Caldwell S. E., Gaston I., Luk K. C., Wu P., Ng V. L., Crowe S., Daniels J., Marsh J. GLQ223: an inhibitor of human immunodeficiency virus replication in acutely and chronically infected cells of lymphocyte and mononuclear phagocyte lineage. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2844–2848. doi: 10.1073/pnas.86.8.2844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nicolas E., Beggs J. M., Haltiwanger B. M., Taraschi T. F. Direct evidence for the deoxyribonuclease activity of the plant ribosome inactivating protein gelonin. FEBS Lett. 1997 Apr 7;406(1-2):162–164. doi: 10.1016/s0014-5793(97)00267-6. [DOI] [PubMed] [Google Scholar]
  30. Olson M. C., Ramakrishnan S., Anand R. Ribosomal inhibitory proteins from plants inhibit HIV-1 replication in acutely infected peripheral blood mononuclear cells. AIDS Res Hum Retroviruses. 1991 Dec;7(12):1025–1030. doi: 10.1089/aid.1991.7.1025. [DOI] [PubMed] [Google Scholar]
  31. Pologe L. G., Pavlovec A., Shio H., Ravetch J. V. Primary structure and subcellular localization of the knob-associated histidine-rich protein of Plasmodium falciparum. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7139–7143. doi: 10.1073/pnas.84.20.7139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pouvelle B., Farley P. J., Long C. A., Taraschi T. F. Taxol arrests the development of blood-stage Plasmodium falciparum in vitro and Plasmodium chabaudi adami in malaria-infected mice. J Clin Invest. 1994 Jul;94(1):413–417. doi: 10.1172/JCI117338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pouvelle B., Spiegel R., Hsiao L., Howard R. J., Morris R. L., Thomas A. P., Taraschi T. F. Direct access to serum macromolecules by intraerythrocytic malaria parasites. Nature. 1991 Sep 5;353(6339):73–75. doi: 10.1038/353073a0. [DOI] [PubMed] [Google Scholar]
  34. Preiser P. R., Wilson R. J., Moore P. W., McCready S., Hajibagheri M. A., Blight K. J., Strath M., Williamson D. H. Recombination associated with replication of malarial mitochondrial DNA. EMBO J. 1996 Feb 1;15(3):684–693. [PMC free article] [PubMed] [Google Scholar]
  35. Roncuzzi L., Gasperi-Campani A. DNA-nuclease activity of the single-chain ribosome-inactivating proteins dianthin 30, saporin 6 and gelonin. FEBS Lett. 1996 Aug 19;392(1):16–20. doi: 10.1016/0014-5793(96)00776-4. [DOI] [PubMed] [Google Scholar]
  36. Saxena S. K., Gravell M., Wu Y. N., Mikulski S. M., Shogen K., Ardelt W., Youle R. J. Inhibition of HIV-1 production and selective degradation of viral RNA by an amphibian ribonuclease. J Biol Chem. 1996 Aug 23;271(34):20783–20788. doi: 10.1074/jbc.271.34.20783. [DOI] [PubMed] [Google Scholar]
  37. Smeijsters L. J., Zijlstra N. M., de Vries E., Franssen F. F., Janse C. J., Overdulve J. P. The effect of (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl) adenine on nuclear and organellar DNA synthesis in erythrocytic schizogony in malaria. Mol Biochem Parasitol. 1994 Sep;67(1):115–124. doi: 10.1016/0166-6851(94)90101-5. [DOI] [PubMed] [Google Scholar]
  38. Stirpe F., Olsnes S., Pihl A. Gelonin, a new inhibitor of protein synthesis, nontoxic to intact cells. Isolation, characterization, and preparation of cytotoxic complexes with concanavalin A. J Biol Chem. 1980 Jul 25;255(14):6947–6953. [PubMed] [Google Scholar]
  39. Sun B., Latham K. A., Dodson M. L., Lloyd R. S. Studies on the catalytic mechanism of five DNA glycosylases. Probing for enzyme-DNA imino intermediates. J Biol Chem. 1995 Aug 18;270(33):19501–19508. doi: 10.1074/jbc.270.33.19501. [DOI] [PubMed] [Google Scholar]
  40. Suplick K., Morrisey J., Vaidya A. B. Complex transcription from the extrachromosomal DNA encoding mitochondrial functions of Plasmodium yoelii. Mol Cell Biol. 1990 Dec;10(12):6381–6388. doi: 10.1128/mcb.10.12.6381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Teltow G. J., Irvin J. D., Aron G. M. Inhibition of herpes simplex virus DNA synthesis by pokeweed antiviral protein. Antimicrob Agents Chemother. 1983 Mar;23(3):390–396. doi: 10.1128/aac.23.3.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Vaidya A. B., Lashgari M. S., Pologe L. G., Morrisey J. Structural features of Plasmodium cytochrome b that may underlie susceptibility to 8-aminoquinolines and hydroxynaphthoquinones. Mol Biochem Parasitol. 1993 Mar;58(1):33–42. doi: 10.1016/0166-6851(93)90088-f. [DOI] [PubMed] [Google Scholar]
  43. Vitetta E. S., Thorpe P. E., Uhr J. W. Immunotoxins: magic bullets or misguided missiles? Immunol Today. 1993 Jun;14(6):252–259. doi: 10.1016/0167-5699(93)90041-I. [DOI] [PubMed] [Google Scholar]
  44. Walker P. R., Kokileva L., LeBlanc J., Sikorska M. Detection of the initial stages of DNA fragmentation in apoptosis. Biotechniques. 1993 Dec;15(6):1032–1040. [PubMed] [Google Scholar]
  45. de Rojas M. O., Wasserman M. Temporal relationships on macromolecular synthesis during the asexual cell cycle of Plasmodium falciparum. Trans R Soc Trop Med Hyg. 1985;79(6):792–796. doi: 10.1016/0035-9203(85)90119-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES