Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Oct 15;327(Pt 2):443–448. doi: 10.1042/bj3270443

Modification of the mitochondrial F1-ATPase epsilon subunit, enhancement of the ATPase activity of the IF1-F1 complex and IF1-binding dependence of the conformation of the epsilon subunit.

G Solaini 1, A Baracca 1, E Gabellieri 1, G Lenaz 1
PMCID: PMC1218814  PMID: 9359414

Abstract

Treatment of bovine heart submitochondrial particles with a low concentration of 2-hydroxy-5-nitrobenzyl bromide (HNB), a selective reagent for the Trp residue of the epsilon subunit [Baracca, Barogi, Lenaz and Solaini (1993) Int. J. Biochem. 25, 1269-1275], enhances the ATP hydrolytic activity of the particles exclusively when the natural inhibitor protein IF1 is present. Similarly, isolated F1 [the catalytic sector of the mitochondrial H+-ATPase complex (ATP synthase)] treated with the reagent has the ATPase activity enhanced exclusively if IF1 is bound to it. These experiments suggest that the modification of the epsilon subunit decreases the inhibitory activity of IF1, eliciting the search for a relationship between the epsilon subunit and the inhibitory protein. Certainly, a reverse relationship exists because HNB binds covalently to the isolated F1 exclusively when the inhibitory protein is present. This finding is consistent with the existence of the epsilon subunit in different conformational states depending on whether IF1 is bound to F1 or not. Support for this assertion is obtained by measurements of the intrinsic phosphorescence decay rate of F1, a probe of the Trp epsilon subunit conformation in situ [Solaini, Baracca, Parenti-Castelli and Strambini (1993) Eur. J. Biochem. 214, 729-734]. A significant difference in phosphorescence decay rate is detected when IF1 is added to preparations of F1 previously devoid of the inhibitory protein. These studies indicate that IF1 and the epsilon subunit of the mitochondrial F1-ATPase complex are related, suggesting a possible role of the epsilon subunit in the mechanism of regulation of the mitochondrial ATP synthase.

Full Text

The Full Text of this article is available as a PDF (388.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahams J. P., Leslie A. G., Lutter R., Walker J. E. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994 Aug 25;370(6491):621–628. doi: 10.1038/370621a0. [DOI] [PubMed] [Google Scholar]
  2. Baird B. A., Hammes G. G. Chemical cross-linking studies of beef heart mitochondrial coupling factor 1. J Biol Chem. 1977 Jul 10;252(13):4743–4748. [PubMed] [Google Scholar]
  3. Baracca A., Barogi S., Lenaz G., Solaini G. Interactions and effects of 2-hydroxy-5-nitrobenzyl bromide on the bovine heart mitochondrial F1-ATPase. Int J Biochem. 1993 Sep;25(9):1269–1275. doi: 10.1016/0020-711x(93)90078-s. [DOI] [PubMed] [Google Scholar]
  4. Baracca A., Gabellieri E., Barogi S., Solaini G. Conformational changes of the mitochondrial F1-ATPase epsilon-subunit induced by nucleotide binding as observed by phosphorescence spectroscopy. J Biol Chem. 1995 Sep 15;270(37):21845–21851. doi: 10.1074/jbc.270.37.21845. [DOI] [PubMed] [Google Scholar]
  5. Boyer P. D. The binding change mechanism for ATP synthase--some probabilities and possibilities. Biochim Biophys Acta. 1993 Jan 8;1140(3):215–250. doi: 10.1016/0005-2728(93)90063-l. [DOI] [PubMed] [Google Scholar]
  6. Capaldi R. A., Aggeler R., Turina P., Wilkens S. Coupling between catalytic sites and the proton channel in F1F0-type ATPases. Trends Biochem Sci. 1994 Jul;19(7):284–289. doi: 10.1016/0968-0004(94)90006-x. [DOI] [PubMed] [Google Scholar]
  7. Fillingame R. H. Membrane sectors of F- and V-type H+-transporting ATPases. Curr Opin Struct Biol. 1996 Aug;6(4):491–498. doi: 10.1016/s0959-440x(96)80114-x. [DOI] [PubMed] [Google Scholar]
  8. Gabellieri E., Strambini G. B., Baracca A., Solaini G. Structural mapping of the epsilon-subunit of mitochondrial H(+)-ATPase complex (F1). Biophys J. 1997 Apr;72(4):1818–1827. doi: 10.1016/S0006-3495(97)78828-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gomez-Fernandez J. C., Harris D. A. A thermodynamic analysis of the interaction between the mitochondrial coupling adenosine triphosphatase and its naturally occurring inhibitor protein. Biochem J. 1978 Dec 15;176(3):967–975. doi: 10.1042/bj1760967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Guerrieri F., Scarfò R., Zanotti F., Che Y. W., Papa S. Regulatory role of the ATPase inhibitor protein on proton conduction by mitochondrial H+-ATPase complex. FEBS Lett. 1987 Mar 9;213(1):67–72. doi: 10.1016/0014-5793(87)81466-7. [DOI] [PubMed] [Google Scholar]
  11. Guélin E., Chevallier J., Rigoulet M., Guérin B., Velours J. ATP synthase of yeast mitochondria. Isolation and disruption of the ATP epsilon gene. J Biol Chem. 1993 Jan 5;268(1):161–167. [PubMed] [Google Scholar]
  12. HORTON H. R., KOSHLAND D. E., Jr A HIGHLY REACTIVE COLORED REAGENT WITH SELECTIVITY FOR THE TRYPTOPHAN RESIDUE IN PROTEINS. 2-HYDROXY-5-NITROBENZYL BROMIDE. J Am Chem Soc. 1965 Mar 5;87:1126–1132. doi: 10.1021/ja01083a033. [DOI] [PubMed] [Google Scholar]
  13. Harris D. A., Das A. M. Control of mitochondrial ATP synthesis in the heart. Biochem J. 1991 Dec 15;280(Pt 3):561–573. doi: 10.1042/bj2800561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Horstman L. L., Racker E. Partial resolution of the enzyme catalyzing oxidative phosphorylation. XXII. Interaction between mitochondrial adenosine triphosphatase inhibitor and mitochondrial adenosine triphosphatase. J Biol Chem. 1970 Mar 25;245(6):1336–1344. [PubMed] [Google Scholar]
  15. Ichikawa N., Yoshida Y., Hashimoto T., Tagawa K. An intrinsic ATPase inhibitor binds near the active site of yeast mitochondrial F1-ATPase. J Biochem. 1996 Jan;119(1):193–199. doi: 10.1093/oxfordjournals.jbchem.a021208. [DOI] [PubMed] [Google Scholar]
  16. Jackson P. J., Harris D. A. The mitochondrial ATP synthase inhibitor protein binds near the C-terminus of the F1 beta-subunit. FEBS Lett. 1988 Feb 29;229(1):224–228. doi: 10.1016/0014-5793(88)80832-9. [DOI] [PubMed] [Google Scholar]
  17. Joshi S., Burrows R. ATP synthase complex from bovine heart mitochondria. Subunit arrangement as revealed by nearest neighbor analysis and susceptibility to trypsin. J Biol Chem. 1990 Aug 25;265(24):14518–14525. [PubMed] [Google Scholar]
  18. Klein G., Satre M., Zaccai G., Vignais P. V. Spontaneous aggregation of the mitochondrial natural ATPase inhibitor in salt solutions as demonstrated by gel filtration and neutron scattering. Application to the concomitant purification of the ATPase inhibitor and F1-ATPase. Biochim Biophys Acta. 1982 Aug 20;681(2):226–232. doi: 10.1016/0005-2728(82)90026-3. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Lopez-Mediavilla C., Vigny H., Godinot C. Docking the mitochondrial inhibitor protein IF1 to a membrane receptor different from the F1-ATPase beta subunit. Eur J Biochem. 1993 Jul 15;215(2):487–496. doi: 10.1111/j.1432-1033.1993.tb18058.x. [DOI] [PubMed] [Google Scholar]
  22. Malin E. L., Greenberg R., Farrell H. M., Jr Spectrophotometric estimation of protein concentration in the presence of tryptophan modified by 2-hydroxy-5-nitrobenzyl bromide. Anal Biochem. 1985 Feb 1;144(2):356–361. doi: 10.1016/0003-2697(85)90128-9. [DOI] [PubMed] [Google Scholar]
  23. Mimura H., Hashimoto T., Yoshida Y., Ichikawa N., Tagawa K. Binding of an intrinsic ATPase inhibitor to the interface between alpha- and beta-subunits of F1FoATPase upon de-energization of mitochondria. J Biochem. 1993 Mar;113(3):350–354. doi: 10.1093/oxfordjournals.jbchem.a124050. [DOI] [PubMed] [Google Scholar]
  24. Norling B. The effect of anionic detergents on the ATPase activity of isolated F1 from the thermophilic bacterium PS3. Biochem Biophys Res Commun. 1986 May 14;136(3):899–905. doi: 10.1016/0006-291x(86)90417-1. [DOI] [PubMed] [Google Scholar]
  25. Orriss G. L., Runswick M. J., Collinson I. R., Miroux B., Fearnley I. M., Skehel J. M., Walker J. E. The delta- and epsilon-subunits of bovine F1-ATPase interact to form a heterodimeric subcomplex. Biochem J. 1996 Mar 1;314(Pt 2):695–700. doi: 10.1042/bj3140695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. PULLMAN M. E., MONROY G. C. A NATURALLY OCCURRING INHIBITOR OF MITOCHONDRIAL ADENOSINE TRIPHOSPHATASE. J Biol Chem. 1963 Nov;238:3762–3769. [PubMed] [Google Scholar]
  27. Paik S. R., Jault J. M., Allison W. S. Inhibition and inactivation of the F1 adenosinetriphosphatase from Bacillus PS3 by dequalinium and activation of the enzyme by lauryl dimethylamine oxide. Biochemistry. 1994 Jan 11;33(1):126–133. doi: 10.1021/bi00167a016. [DOI] [PubMed] [Google Scholar]
  28. Penefsky H. S. Mechanism of inhibition of mitochondrial adenosine triphosphatase by dicyclohexylcarbodiimide and oligomycin: relationship to ATP synthesis. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1589–1593. doi: 10.1073/pnas.82.6.1589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Penefsky H. S. Preparation of beef heart mitochondrial ATPase. Methods Enzymol. 1979;55:304–308. doi: 10.1016/0076-6879(79)55035-6. [DOI] [PubMed] [Google Scholar]
  30. Racker E., Horstman L. L. Partial resolution of the enzymes catalyzing oxidative phosphorylation. 13. Structure and function of submitochondrial particles completely resolved with respect to coupling factor. J Biol Chem. 1967 May 25;242(10):2547–2551. [PubMed] [Google Scholar]
  31. Rouslin W. Regulation of the mitochondrial ATPase in situ in cardiac muscle: role of the inhibitor subunit. J Bioenerg Biomembr. 1991 Dec;23(6):873–888. doi: 10.1007/BF00786006. [DOI] [PubMed] [Google Scholar]
  32. Solaini G., Baracca A., Parenti Castelli G., Strambini G. B. Tryptophan phosphorescence as a structural probe of mitochondrial F1-ATPase epsilon-subunit. Eur J Biochem. 1993 Jun 15;214(3):729–734. doi: 10.1111/j.1432-1033.1993.tb17974.x. [DOI] [PubMed] [Google Scholar]
  33. Strambini G. B. Singular oxygen effects on the room-temperature phosphorescence of alcohol dehydrogenase from horse liver. Biophys J. 1983 Jul;43(1):127–130. doi: 10.1016/S0006-3495(83)84331-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vázquez-Contreras E., Vázquez-Laslop N., Dreyfus G. The native F0F1-inhibitor protein complex from beef heart mitochondria and its reconstitution in liposomes. J Bioenerg Biomembr. 1995 Feb;27(1):109–116. doi: 10.1007/BF02110338. [DOI] [PubMed] [Google Scholar]
  35. Walker J. E., Fearnley I. M., Gay N. J., Gibson B. W., Northrop F. D., Powell S. J., Runswick M. J., Saraste M., Tybulewicz V. L. Primary structure and subunit stoichiometry of F1-ATPase from bovine mitochondria. J Mol Biol. 1985 Aug 20;184(4):677–701. doi: 10.1016/0022-2836(85)90313-4. [DOI] [PubMed] [Google Scholar]
  36. Walker J. E. The regulation of catalysis in ATP synthase. Curr Opin Struct Biol. 1994 Dec;4(6):912–918. doi: 10.1016/0959-440x(94)90274-7. [DOI] [PubMed] [Google Scholar]
  37. van Raaij M. J., Orriss G. L., Montgomery M. G., Runswick M. J., Fearnley I. M., Skehel J. M., Walker J. E. The ATPase inhibitor protein from bovine heart mitochondria: the minimal inhibitory sequence. Biochemistry. 1996 Dec 10;35(49):15618–15625. doi: 10.1021/bi960628f. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES