Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Oct 15;327(Pt 2):461–472. doi: 10.1042/bj3270461

Cholecystokinin-stimulated tyrosine phosphorylation of p125FAK and paxillin is mediated by phospholipase C-dependent and -independent mechanisms and requires the integrity of the actin cytoskeleton and participation of p21rho.

L J García 1, J A Rosado 1, A González 1, R T Jensen 1
PMCID: PMC1218817  PMID: 9359417

Abstract

Recent studies show that the effects of some oncogenes, integrins, growth factors and neuropeptides are mediated by tyrosine phosphorylation of the cytosolic kinase p125 focal adhesion kinase (p125(FAK)) and the cytoskeletal protein paxillin. Recently we demonstrated that cholecystokinin (CCK) C-terminal octapeptide (CCK-8) causes tyrosine phosphorylation of p125(FAK) and paxillin in rat pancreatic acini. The present study was aimed at examining whether protein kinase C (PKC) activation, calcium mobilization, cytoskeletal organization and small G-protein p21(rho) activation play a role in mediating the stimulation of tyrosine phosphorylation by CCK-8 in acini. CCK-8-stimulated phosphorylation of p125(FAK) and paxillin reached a maximum within 2.5 min. The CCK-8 dose response for causing changes in the cytosolic calcium concentration ([Ca2+]i) was similar to that for p125(FAK) and paxillin phosphorylation, and both were to the left of that for receptor occupation and inositol phosphate production. PMA increased tyrosine phosphorylation of both proteins. The calcium ionophore A23187 caused only 25% of the maximal stimulation caused by CCK-8. GF109203X, a PKC inhibitor, completely inhibited phosphorylation with PMA but had no effect on the response to CCK-8. Depletion of [Ca2+]i by thapsigargin had no effect on CCK-8-stimulated phosphorylation. Pretreatment with both GF109203X and thapsigargin decreased CCK-8-stimulated phosphorylation of both proteins by 50%. Cytochalasin D, but not colchicine, completely inhibited CCK-8- and PMA-induced p125(FAK) and paxillin phosphorylation. Treatment with Clostridium botulinum C3 transferase, which inactivates p21(rho), caused significant inhibition of CCK-8-stimulated p125(FAK) and paxillin phosphorylation. These results demonstrate that, in pancreatic acini, CCK-8 causes rapid p125(FAK) and paxillin phosphorylation that is mediated by both phospholipase C-dependent and -independent mechanisms. For this tyrosine phosphorylation to occur, the integrity of the actin, but not the microtubule, cytoskeleton is essential as well as the activation of p21(rho).

Full Text

The Full Text of this article is available as a PDF (922.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aktories K., Weller U., Chhatwal G. S. Clostridium botulinum type C produces a novel ADP-ribosyltransferase distinct from botulinum C2 toxin. FEBS Lett. 1987 Feb 9;212(1):109–113. doi: 10.1016/0014-5793(87)81566-1. [DOI] [PubMed] [Google Scholar]
  2. Burridge K., Fath K., Kelly T., Nuckolls G., Turner C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol. 1988;4:487–525. doi: 10.1146/annurev.cb.04.110188.002415. [DOI] [PubMed] [Google Scholar]
  3. Burridge K., Turner C. E., Romer L. H. Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J Cell Biol. 1992 Nov;119(4):893–903. doi: 10.1083/jcb.119.4.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cooper J. A. Effects of cytochalasin and phalloidin on actin. J Cell Biol. 1987 Oct;105(4):1473–1478. doi: 10.1083/jcb.105.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dabrowski A., Grady T., Logsdon C. D., Williams J. A. Jun kinases are rapidly activated by cholecystokinin in rat pancreas both in vitro and in vivo. J Biol Chem. 1996 Mar 8;271(10):5686–5690. doi: 10.1074/jbc.271.10.5686. [DOI] [PubMed] [Google Scholar]
  6. Duan R. D., Wagner A. C., Yule D. I., Williams J. A. Multiple inhibitory effects of genistein on stimulus-secretion coupling in rat pancreatic acini. Am J Physiol. 1994 Feb;266(2 Pt 1):G303–G310. doi: 10.1152/ajpgi.1994.266.2.G303. [DOI] [PubMed] [Google Scholar]
  7. Duan R. D., Williams J. A. Cholecystokinin rapidly activates mitogen-activated protein kinase in rat pancreatic acini. Am J Physiol. 1994 Sep;267(3 Pt 1):G401–G408. doi: 10.1152/ajpgi.1994.267.3.G401. [DOI] [PubMed] [Google Scholar]
  8. Duan R. D., Zheng C. F., Guan K. L., Williams J. A. Activation of MAP kinase kinase (MEK) and Ras by cholecystokinin in rat pancreatic acini. Am J Physiol. 1995 Jun;268(6 Pt 1):G1060–G1065. doi: 10.1152/ajpgi.1995.268.6.G1060. [DOI] [PubMed] [Google Scholar]
  9. Flinn H. M., Ridley A. J. Rho stimulates tyrosine phosphorylation of focal adhesion kinase, p130 and paxillin. J Cell Sci. 1996 May;109(Pt 5):1133–1141. doi: 10.1242/jcs.109.5.1133. [DOI] [PubMed] [Google Scholar]
  10. Furriols M., Chillarón J., Mora C., Castelló A., Bertran J., Camps M., Testar X., Vilaró S., Zorzano A., Palacín M. rBAT, related to L-cysteine transport, is localized to the microvilli of proximal straight tubules, and its expression is regulated in kidney by development. J Biol Chem. 1993 Dec 25;268(36):27060–27068. [PubMed] [Google Scholar]
  11. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  12. Hall A. The cellular functions of small GTP-binding proteins. Science. 1990 Aug 10;249(4969):635–640. doi: 10.1126/science.2116664. [DOI] [PubMed] [Google Scholar]
  13. Huckle W. R., Dy R. C., Earp H. S. Calcium-dependent increase in tyrosine kinase activity stimulated by angiotensin II. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8837–8841. doi: 10.1073/pnas.89.18.8837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Itoh H., Shimomura A., Okubo S., Ichikawa K., Ito M., Konishi T., Nakano T. Inhibition of myosin light chain phosphatase during Ca(2+)-independent vasocontraction. Am J Physiol. 1993 Nov;265(5 Pt 1):C1319–C1324. doi: 10.1152/ajpcell.1993.265.5.C1319. [DOI] [PubMed] [Google Scholar]
  15. Jensen R. T., Lemp G. F., Gardner J. D. Interactions of COOH-terminal fragments of cholecystokinin with receptors on dispersed acini from guinea pig pancreas. J Biol Chem. 1982 May 25;257(10):5554–5559. [PubMed] [Google Scholar]
  16. Jensen R. T., Wank S. A., Rowley W. H., Sato S., Gardner J. D. Interaction of CCK with pancreatic acinar cells. Trends Pharmacol Sci. 1989 Oct;10(10):418–423. doi: 10.1016/0165-6147(89)90192-2. [DOI] [PubMed] [Google Scholar]
  17. Jungermann J., Lerch M. M., Weidenbach H., Lutz M. P., Krüger B., Adler G. Disassembly of rat pancreatic acinar cell cytoskeleton during supramaximal secretagogue stimulation. Am J Physiol. 1995 Feb;268(2 Pt 1):G328–G338. doi: 10.1152/ajpgi.1995.268.2.G328. [DOI] [PubMed] [Google Scholar]
  18. Kanner S. B., Reynolds A. B., Vines R. R., Parsons J. T. Monoclonal antibodies to individual tyrosine-phosphorylated protein substrates of oncogene-encoded tyrosine kinases. Proc Natl Acad Sci U S A. 1990 May;87(9):3328–3332. doi: 10.1073/pnas.87.9.3328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Karnam P., Standaert M. L., Galloway L., Farese R. V. Activation and translocation of Rho (and ADP ribosylation factor) by insulin in rat adipocytes. Apparent involvement of phosphatidylinositol 3-kinase. J Biol Chem. 1997 Mar 7;272(10):6136–6140. doi: 10.1074/jbc.272.10.6136. [DOI] [PubMed] [Google Scholar]
  20. Kitsukawa Y., Felley C., Metz D. C., Jensen R. T. Thapsigargin defines roles of Ca2+ in initial, sustained, and potentiated stimulation of pepsinogen secretion. Am J Physiol. 1994 Apr;266(4 Pt 1):G613–G623. doi: 10.1152/ajpgi.1994.266.4.G613. [DOI] [PubMed] [Google Scholar]
  21. Kojima I., Lippes H., Kojima K., Rasmussen H. Aldosterone secretion: effect of phorbol ester and A23187. Biochem Biophys Res Commun. 1983 Oct 31;116(2):555–562. doi: 10.1016/0006-291x(83)90559-4. [DOI] [PubMed] [Google Scholar]
  22. Lach E. B., Broad S., Rozengurt E. Mitogenic signaling by transfected neuromedin B receptors in Rat-1 cells. Cell Growth Differ. 1995 Nov;6(11):1427–1435. [PubMed] [Google Scholar]
  23. Leeb-Lundberg L. M., Song X. H. Bradykinin and bombesin rapidly stimulate tyrosine phosphorylation of a 120-kDa group of proteins in Swiss 3T3 cells. J Biol Chem. 1991 Apr 25;266(12):7746–7749. [PubMed] [Google Scholar]
  24. Leeb-Lundberg L. M., Song X. H., Mathis S. A. Focal adhesion-associated proteins p125FAK and paxillin are substrates for bradykinin-stimulated tyrosine phosphorylation in Swiss 3T3 cells. J Biol Chem. 1994 Sep 30;269(39):24328–24334. [PubMed] [Google Scholar]
  25. Leung M. F., Sartorelli A. C. The effects of microtubule disrupting drugs on the differentiation of HL-60 leukemia cells. Leuk Res. 1992 Sep;16(9):929–935. doi: 10.1016/0145-2126(92)90038-9. [DOI] [PubMed] [Google Scholar]
  26. Lutz M. P., Sutor S. L., Abraham R. T., Miller L. J. A role for cholecystokinin-stimulated protein tyrosine phosphorylation in regulated secretion by the pancreatic acinar cell. J Biol Chem. 1993 May 25;268(15):11119–11124. [PubMed] [Google Scholar]
  27. Malcolm K. C., Elliott C. M., Exton J. H. Evidence for Rho-mediated agonist stimulation of phospholipase D in rat1 fibroblasts. Effects of Clostridium botulinum C3 exoenzyme. J Biol Chem. 1996 May 31;271(22):13135–13139. doi: 10.1074/jbc.271.22.13135. [DOI] [PubMed] [Google Scholar]
  28. Metz D. C., Patto R. J., Mrozinski J. E., Jr, Jensen R. T., Turner R. J., Gardner J. D. Thapsigargin defines the roles of cellular calcium in secretagogue-stimulated enzyme secretion from pancreatic acini. J Biol Chem. 1992 Oct 15;267(29):20620–20629. [PubMed] [Google Scholar]
  29. Nemoto Y., Namba T., Kozaki S., Narumiya S. Clostridium botulinum C3 ADP-ribosyltransferase gene. Cloning, sequencing, and expression of a functional protein in Escherichia coli. J Biol Chem. 1991 Oct 15;266(29):19312–19319. [PubMed] [Google Scholar]
  30. O'Konski M. S., Pandol S. J. Cholecystokinin JMV-180 and caerulein effects on the pancreatic acinar cell cytoskeleton. Pancreas. 1993 Sep;8(5):638–646. doi: 10.1097/00006676-199309000-00018. [DOI] [PubMed] [Google Scholar]
  31. Paterson H. F., Self A. J., Garrett M. D., Just I., Aktories K., Hall A. Microinjection of recombinant p21rho induces rapid changes in cell morphology. J Cell Biol. 1990 Sep;111(3):1001–1007. doi: 10.1083/jcb.111.3.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Peikin S. R., Rottman A. J., Batzri S., Gardner J. D. Kinetics of amylase release by dispersed acini prepared from guinea pig pancreas. Am J Physiol. 1978 Dec;235(6):E743–E749. doi: 10.1152/ajpendo.1978.235.6.E743. [DOI] [PubMed] [Google Scholar]
  33. Pollo D. A., Baldassare J. J., Honda T., Henderson P. A., Talkad V. D., Gardner J. D. Effects of cholecystokinin (CCK) and other secretagogues on isoforms of protein kinase C (PKC) in pancreatic acini. Biochim Biophys Acta. 1994 Oct 20;1224(1):127–138. doi: 10.1016/0167-4889(94)90120-1. [DOI] [PubMed] [Google Scholar]
  34. Rankin S., Morii N., Narumiya S., Rozengurt E. Botulinum C3 exoenzyme blocks the tyrosine phosphorylation of p125FAK and paxillin induced by bombesin and endothelin. FEBS Lett. 1994 Nov 14;354(3):315–319. doi: 10.1016/0014-5793(94)01148-6. [DOI] [PubMed] [Google Scholar]
  35. Rankin S., Rozengurt E. Platelet-derived growth factor modulation of focal adhesion kinase (p125FAK) and paxillin tyrosine phosphorylation in Swiss 3T3 cells. Bell-shaped dose response and cross-talk with bombesin. J Biol Chem. 1994 Jan 7;269(1):704–710. [PubMed] [Google Scholar]
  36. Raufman J. P., Kasbekar D. K., Jensen R. T., Gardner J. D. Potentiation of pepsinogen secretion from dispersed glands from rat stomach. Am J Physiol. 1983 Oct;245(4):G525–G530. doi: 10.1152/ajpgi.1983.245.4.G525. [DOI] [PubMed] [Google Scholar]
  37. Renshaw M. W., Toksoz D., Schwartz M. A. Involvement of the small GTPase rho in integrin-mediated activation of mitogen-activated protein kinase. J Biol Chem. 1996 Sep 6;271(36):21691–21694. doi: 10.1074/jbc.271.36.21691. [DOI] [PubMed] [Google Scholar]
  38. Ridley A. J., Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992 Aug 7;70(3):389–399. doi: 10.1016/0092-8674(92)90163-7. [DOI] [PubMed] [Google Scholar]
  39. Ridley A. J. Rho-related proteins: actin cytoskeleton and cell cycle. Curr Opin Genet Dev. 1995 Feb;5(1):24–30. doi: 10.1016/s0959-437x(95)90049-7. [DOI] [PubMed] [Google Scholar]
  40. Ridley A. J. Signal transduction through the GTP-binding proteins Rac and Rho. J Cell Sci Suppl. 1994;18:127–131. doi: 10.1242/jcs.1994.supplement_18.19. [DOI] [PubMed] [Google Scholar]
  41. Rowley W. H., Sato S., Huang S. C., Collado-Escobar D. M., Beaven M. A., Wang L. H., Martinez J., Gardner J. D., Jensen R. T. Cholecystokinin-induced formation of inositol phosphates in pancreatic acini. Am J Physiol. 1990 Oct;259(4 Pt 1):G655–G665. doi: 10.1152/ajpgi.1990.259.4.G655. [DOI] [PubMed] [Google Scholar]
  42. Rozengurt E. Bombesin-induction of cell proliferation in 3T3 cells. Specific receptors and early signaling events. Ann N Y Acad Sci. 1988;547:277–292. doi: 10.1111/j.1749-6632.1988.tb23896.x. [DOI] [PubMed] [Google Scholar]
  43. Rozengurt E. Convergent signalling in the action of integrins, neuropeptides, growth factors and oncogenes. Cancer Surv. 1995;24:81–96. [PubMed] [Google Scholar]
  44. Sah V. P., Hoshijima M., Chien K. R., Brown J. H. Rho is required for Galphaq and alpha1-adrenergic receptor signaling in cardiomyocytes. Dissociation of Ras and Rho pathways. J Biol Chem. 1996 Dec 6;271(49):31185–31190. doi: 10.1074/jbc.271.49.31185. [DOI] [PubMed] [Google Scholar]
  45. Salmon E. D., McKeel M., Hays T. Rapid rate of tubulin dissociation from microtubules in the mitotic spindle in vivo measured by blocking polymerization with colchicine. J Cell Biol. 1984 Sep;99(3):1066–1075. doi: 10.1083/jcb.99.3.1066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Schaller M. D., Borgman C. A., Cobb B. S., Vines R. R., Reynolds A. B., Parsons J. T. pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5192–5196. doi: 10.1073/pnas.89.11.5192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Seckl M. J., Morii N., Narumiya S., Rozengurt E. Guanosine 5'-3-O-(thio)triphosphate stimulates tyrosine phosphorylation of p125FAK and paxillin in permeabilized Swiss 3T3 cells. Role of p21rho. J Biol Chem. 1995 Mar 24;270(12):6984–6990. doi: 10.1074/jbc.270.12.6984. [DOI] [PubMed] [Google Scholar]
  48. Seckl M., Rozengurt E. Tyrphostin inhibits bombesin stimulation of tyrosine phosphorylation, c-fos expression, and DNA synthesis in Swiss 3T3 cells. J Biol Chem. 1993 May 5;268(13):9548–9554. [PubMed] [Google Scholar]
  49. Sekine A., Fujiwara M., Narumiya S. Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J Biol Chem. 1989 May 25;264(15):8602–8605. [PubMed] [Google Scholar]
  50. Seufferlein T., Rozengurt E. Lysophosphatidic acid stimulates tyrosine phosphorylation of focal adhesion kinase, paxillin, and p130. Signaling pathways and cross-talk with platelet-derived growth factor. J Biol Chem. 1994 Mar 25;269(12):9345–9351. [PubMed] [Google Scholar]
  51. Seufferlein T., Rozengurt E. Sphingosine induces p125FAK and paxillin tyrosine phosphorylation, actin stress fiber formation, and focal contact assembly in Swiss 3T3 cells. J Biol Chem. 1994 Nov 4;269(44):27610–27617. [PubMed] [Google Scholar]
  52. Seufferlein T., Withers D. J., Broad S., Herget T., Walsh J. H., Rozengurt E. The human CCKB/gastrin receptor transfected into rat1 fibroblasts mediates activation of MAP kinase, p74raf-1 kinase, and mitogenesis. Cell Growth Differ. 1995 Apr;6(4):383–393. [PubMed] [Google Scholar]
  53. Shattil S. J., Haimovich B., Cunningham M., Lipfert L., Parsons J. T., Ginsberg M. H., Brugge J. S. Tyrosine phosphorylation of pp125FAK in platelets requires coordinated signaling through integrin and agonist receptors. J Biol Chem. 1994 May 20;269(20):14738–14745. [PubMed] [Google Scholar]
  54. Sinnett-Smith J., Zachary I., Valverde A. M., Rozengurt E. Bombesin stimulation of p125 focal adhesion kinase tyrosine phosphorylation. Role of protein kinase C, Ca2+ mobilization, and the actin cytoskeleton. J Biol Chem. 1993 Jul 5;268(19):14261–14268. [PubMed] [Google Scholar]
  55. Taniguchi T., Matsui T., Ito M., Murayama T., Tsukamoto T., Katakami Y., Chiba T., Chihara K. Cholecystokinin-B/gastrin receptor signaling pathway involves tyrosine phosphorylations of p125FAK and p42MAP. Oncogene. 1994 Mar;9(3):861–867. [PubMed] [Google Scholar]
  56. Taniguchi T., Takaishi K., Murayama T., Ito M., Iwata N., Chihara K., Sasaki T., Takai Y., Matsui T. Cholecystokinin-B/gastrin receptors mediate rapid formation of actin stress fibers. Oncogene. 1996 Mar 21;12(6):1357–1360. [PubMed] [Google Scholar]
  57. Toullec D., Pianetti P., Coste H., Bellevergue P., Grand-Perret T., Ajakane M., Baudet V., Boissin P., Boursier E., Loriolle F. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem. 1991 Aug 25;266(24):15771–15781. [PubMed] [Google Scholar]
  58. Walsh M. P. Regulation of vascular smooth muscle tone. Can J Physiol Pharmacol. 1994 Aug;72(8):919–936. doi: 10.1139/y94-130. [DOI] [PubMed] [Google Scholar]
  59. Wank S. A. Cholecystokinin receptors. Am J Physiol. 1995 Nov;269(5 Pt 1):G628–G646. doi: 10.1152/ajpgi.1995.269.5.G628. [DOI] [PubMed] [Google Scholar]
  60. Zachary I., Sinnett-Smith J., Rozengurt E. Bombesin, vasopressin, and endothelin stimulation of tyrosine phosphorylation in Swiss 3T3 cells. Identification of a novel tyrosine kinase as a major substrate. J Biol Chem. 1992 Sep 25;267(27):19031–19034. [PubMed] [Google Scholar]
  61. Zachary I., Sinnett-Smith J., Rozengurt E. Stimulation of tyrosine kinase activity in anti-phosphotyrosine immune complexes of Swiss 3T3 cell lysates occurs rapidly after addition of bombesin, vasopressin, and endothelin to intact cells. J Biol Chem. 1991 Dec 15;266(35):24126–24133. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES