Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Oct 15;327(Pt 2):519–525. doi: 10.1042/bj3270519

Galactosamine in walls of slow-growing mycobacteria.

P Draper 1, K H Khoo 1, D Chatterjee 1, A Dell 1, H R Morris 1
PMCID: PMC1218825  PMID: 9359425

Abstract

Galactosamine was found consistently as a minor component of the envelope of five species of slow-growing mycobacteria, including all the major human pathogens, but not three rapid-growing species. The amino sugar was a component of the arabinogalactan of the cell wall skeleton, and occurred at the level of about one residue per arabinogalactan chain. Its amino group was in the free, un-N-acetylated state. Examination of oligosaccharides released by partial acid hydrolysis of arabinogalactan by fast atom bombardment-MS and gas chromatography-MS identified a series of oligoarabinans, each possessing one GalN unit, linked to position 2 of arabinose. It is proposed that the GalN residues occur as stub branches of 1-->5-linked arabinose chains in the arabinogalactan. Possible functions of GalN are discussed.

Full Text

The Full Text of this article is available as a PDF (463.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASSELINEAU J., BUC H., JOLLES P., LEDERER E. Sur la structure chimique d'une fraction peptido-glycolipidique (cire D) isolée de Mycobacterium tuberculosis var. hominis. Bull Soc Chim Biol (Paris) 1958;40(12):1953–1964. [PubMed] [Google Scholar]
  2. Allen A. K., Neuberger A. The quantitation of glucosamine and galactosamine in glycoproteins after hydrolysis in p-toluenesulphonic acid. FEBS Lett. 1975 Dec 1;60(1):76–80. doi: 10.1016/0014-5793(75)80422-4. [DOI] [PubMed] [Google Scholar]
  3. Besra G. S., Khoo K. H., McNeil M. R., Dell A., Morris H. R., Brennan P. J. A new interpretation of the structure of the mycolyl-arabinogalactan complex of Mycobacterium tuberculosis as revealed through characterization of oligoglycosylalditol fragments by fast-atom bombardment mass spectrometry and 1H nuclear magnetic resonance spectroscopy. Biochemistry. 1995 Apr 4;34(13):4257–4266. doi: 10.1021/bi00013a015. [DOI] [PubMed] [Google Scholar]
  4. CLARKE P. H., MEADOW P. M. Evidence for the occurrence of Permeases for tricarboxylic acid cycle intermediates in Pseudomonas aeruginosa. J Gen Microbiol. 1959 Feb;20(1):144–155. doi: 10.1099/00221287-20-1-144. [DOI] [PubMed] [Google Scholar]
  5. CUMMINS C. S., HARRIS H. Studies on the cell-wall composition and taxonomy of Actinomycetales and related groups. J Gen Microbiol. 1958 Feb;18(1):173–189. doi: 10.1099/00221287-18-1-173. [DOI] [PubMed] [Google Scholar]
  6. Chatterjee D., Lowell K., Rivoire B., McNeil M. R., Brennan P. J. Lipoarabinomannan of Mycobacterium tuberculosis. Capping with mannosyl residues in some strains. J Biol Chem. 1992 Mar 25;267(9):6234–6239. [PubMed] [Google Scholar]
  7. Daffe M., Brennan P. J., McNeil M. Predominant structural features of the cell wall arabinogalactan of Mycobacterium tuberculosis as revealed through characterization of oligoglycosyl alditol fragments by gas chromatography/mass spectrometry and by 1H and 13C NMR analyses. J Biol Chem. 1990 Apr 25;265(12):6734–6743. [PubMed] [Google Scholar]
  8. Daffe M., McNeil M., Brennan P. J. Major structural features of the cell wall arabinogalactans of Mycobacterium, Rhodococcus, and Nocardia spp. Carbohydr Res. 1993 Nov 3;249(2):383–398. doi: 10.1016/0008-6215(93)84102-c. [DOI] [PubMed] [Google Scholar]
  9. Daffé M., Draper P. The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol. 1998;39:131–203. doi: 10.1016/s0065-2911(08)60016-8. [DOI] [PubMed] [Google Scholar]
  10. Davidson L. A., Draper P., Minnikin D. E. Studies on the mycolic acids from the walls of Mycobacterium microti. J Gen Microbiol. 1982 Apr;128(4):823–828. doi: 10.1099/00221287-128-4-823. [DOI] [PubMed] [Google Scholar]
  11. Dell A., Reason A. J., Khoo K. H., Panico M., McDowell R. A., Morris H. R. Mass spectrometry of carbohydrate-containing biopolymers. Methods Enzymol. 1994;230:108–132. doi: 10.1016/0076-6879(94)30010-0. [DOI] [PubMed] [Google Scholar]
  12. Draper P., Kandler O., Darbre A. Peptidoglycan and arabinogalactan of Mycobacterium leprae. J Gen Microbiol. 1987 May;133(5):1187–1194. doi: 10.1099/00221287-133-5-1187. [DOI] [PubMed] [Google Scholar]
  13. Draper P. The walls of Mycobacterium lepraemurium: chemistry and ultrastructure. J Gen Microbiol. 1971 Dec;69(3):313–324. doi: 10.1099/00221287-69-3-313. [DOI] [PubMed] [Google Scholar]
  14. Ferguson M. A., Homans S. W., Dwek R. A., Rademacher T. W. Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science. 1988 Feb 12;239(4841 Pt 1):753–759. doi: 10.1126/science.3340856. [DOI] [PubMed] [Google Scholar]
  15. Hirschfield G. R., McNeil M., Brennan P. J. Peptidoglycan-associated polypeptides of Mycobacterium tuberculosis. J Bacteriol. 1990 Feb;172(2):1005–1013. doi: 10.1128/jb.172.2.1005-1013.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Homans S. W., Ferguson M. A., Dwek R. A., Rademacher T. W., Anand R., Williams A. F. Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy-1 glycoprotein. Nature. 1988 May 19;333(6170):269–272. doi: 10.1038/333269a0. [DOI] [PubMed] [Google Scholar]
  17. Lederer E. The mycobacterial cell wall. Pure Appl Chem. 1971;25(1):135–165. doi: 10.1351/pac197125010135. [DOI] [PubMed] [Google Scholar]
  18. McNeil M. R., Robuck K. G., Harter M., Brennan P. J. Enzymatic evidence for the presence of a critical terminal hexa-arabinoside in the cell walls of Mycobacterium tuberculosis. Glycobiology. 1994 Apr;4(2):165–173. doi: 10.1093/glycob/4.2.165. [DOI] [PubMed] [Google Scholar]
  19. McNeil M., Daffe M., Brennan P. J. Evidence for the nature of the link between the arabinogalactan and peptidoglycan of mycobacterial cell walls. J Biol Chem. 1990 Oct 25;265(30):18200–18206. [PubMed] [Google Scholar]
  20. UNGAR J., MUGGLETON P. W., DUDLEY J. A., GRIFFITHS M. I. Preparation and properties of a freeze-dried B.C.G. vaccine of increased stability. Br Med J. 1962 Oct 27;2(5312):1086–1089. doi: 10.1136/bmj.2.5312.1086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Udenfriend S., Stein S., Böhlen P., Dairman W., Leimgruber W., Weigele M. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science. 1972 Nov 24;178(4063):871–872. doi: 10.1126/science.178.4063.871. [DOI] [PubMed] [Google Scholar]
  22. Weinhart U., Thomas J. R., Pak Y. B., Thompson G. A., Jr, Ferguson M. A. Structural characterization of a novel glycosyl-phosphatidylinositol from the protozoan Tetrahymena mimbres. Biochem J. 1991 Oct 15;279(Pt 2):605–608. doi: 10.1042/bj2790605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Westphal O., Jann K., Himmelspach K. Chemistry and immunochemistry of bacterial lipopolysaccharides as cell wall antigens and endotoxins. Prog Allergy. 1983;33:9–39. [PubMed] [Google Scholar]
  24. Wietzerbin-Falszpan J., Das B. C., Gros C., Petit J. F., Lederer E. The amino acids of the cell wall of Mycobacterium tuberculosis var. bovis, strain BCG. Presence of a poly(L-glutamic acid). Eur J Biochem. 1973 Feb 1;32(3):525–532. doi: 10.1111/j.1432-1033.1973.tb02637.x. [DOI] [PubMed] [Google Scholar]
  25. Wietzerbin J., Lederer F., Petit J. F. Structural study of the poly-l-Glutamic acid of the cell wall of Mycobacterium tuberculosis var hominis, strain Brevannes. Biochem Biophys Res Commun. 1975 Jan 20;62(2):246–252. doi: 10.1016/s0006-291x(75)80130-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES