Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Oct 15;327(Pt 2):537–544. doi: 10.1042/bj3270537

Engineering the substrate specificity of Bacillus megaterium cytochrome P-450 BM3: hydroxylation of alkyl trimethylammonium compounds.

C F Oliver 1, S Modi 1, W U Primrose 1, L Y Lian 1, G C Roberts 1
PMCID: PMC1218827  PMID: 9359427

Abstract

Oligonucleotide-directed mutagenesis has been used to replace arginine-47 with glutamate in cytochrome P-450 BM3 from Bacillus megaterium and in its haem domain. The mutant has been characterized by sequencing, mass spectrometry, steady-state kinetics and by optical and NMR measurements of substrate binding. The mutant retains significant catalytic activity towards C12-C16 fatty acids, catalysing hydroxylation in the same (omega-1, omega-2, omega-3) positions with kcat/Km values a factor of 14-21 lower. C12-C16 alkyl trimethylammonium compounds are relatively poor substrates for the wild-type enzyme, but are efficiently hydroxylated by the arginine-47-->glutamate mutant at the omega-1, omega-2 and omega-3 positions, with kcat values of up to 19 s-1. Optical spectroscopy shows that the binding of the C14 and C16 alkyl trimethylammonium compounds to the mutant is similar to that of the corresponding fatty acids to the wild-type enzyme. Paramagnetic relaxation measurements show that laurate binds to the ferric state of the mutant in a significantly different position, 1.5 A closer to the iron, than seen in the wild-type, although this difference is much smaller ( approximately 0.2 A) in the ferrous state of the complex. The binding of a substrate having the same charge as residue 47 to the ferric state of the enzyme is roughly ten times weaker than that of a substrate having the opposite charge (and thus is able to make an ion-pair interaction with this residue). The results are discussed in the light of the three-dimensional structure of the enzyme.

Full Text

The Full Text of this article is available as a PDF (544.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boddupalli S. S., Estabrook R. W., Peterson J. A. Fatty acid monooxygenation by cytochrome P-450BM-3. J Biol Chem. 1990 Mar 15;265(8):4233–4239. [PubMed] [Google Scholar]
  2. Capdevila J. H., Wei S., Helvig C., Falck J. R., Belosludtsev Y., Truan G., Graham-Lorence S. E., Peterson J. A. The highly stereoselective oxidation of polyunsaturated fatty acids by cytochrome P450BM-3. J Biol Chem. 1996 Sep 13;271(37):22663–22671. doi: 10.1074/jbc.271.37.22663. [DOI] [PubMed] [Google Scholar]
  3. Cupp-Vickery J. R., Poulos T. L. Structure of cytochrome P450eryF involved in erythromycin biosynthesis. Nat Struct Biol. 1995 Feb;2(2):144–153. doi: 10.1038/nsb0295-144. [DOI] [PubMed] [Google Scholar]
  4. Dawson J. H. Probing structure-function relations in heme-containing oxygenases and peroxidases. Science. 1988 Apr 22;240(4851):433–439. doi: 10.1126/science.3358128. [DOI] [PubMed] [Google Scholar]
  5. Fulco A. J. P450BM-3 and other inducible bacterial P450 cytochromes: biochemistry and regulation. Annu Rev Pharmacol Toxicol. 1991;31:177–203. doi: 10.1146/annurev.pa.31.040191.001141. [DOI] [PubMed] [Google Scholar]
  6. Graham-Lorence S., Truan G., Peterson J. A., Falck J. R., Wei S., Helvig C., Capdevila J. H. An active site substitution, F87V, converts cytochrome P450 BM-3 into a regio- and stereoselective (14S,15R)-arachidonic acid epoxygenase. J Biol Chem. 1997 Jan 10;272(2):1127–1135. doi: 10.1074/jbc.272.2.1127. [DOI] [PubMed] [Google Scholar]
  7. Hasemann C. A., Kurumbail R. G., Boddupalli S. S., Peterson J. A., Deisenhofer J. Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure. 1995 Jan 15;3(1):41–62. doi: 10.1016/s0969-2126(01)00134-4. [DOI] [PubMed] [Google Scholar]
  8. Ho P. P., Fulco A. J. Involvement of a single hydroxylase species in the hydroxylation of palmitate at the omega-1, omega-2 and omega-3 positions by a preparation from Bacillus megaterium. Biochim Biophys Acta. 1976 May 27;431(2):249–256. doi: 10.1016/0005-2760(76)90145-4. [DOI] [PubMed] [Google Scholar]
  9. Li H. Y., Darwish K., Poulos T. L. Characterization of recombinant Bacillus megaterium cytochrome P-450 BM-3 and its two functional domains. J Biol Chem. 1991 Jun 25;266(18):11909–11914. [PubMed] [Google Scholar]
  10. Li H., Poulos T. L. The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. Nat Struct Biol. 1997 Feb;4(2):140–146. doi: 10.1038/nsb0297-140. [DOI] [PubMed] [Google Scholar]
  11. Matson R. S., Hare R. S., Fulco A. J. Characteristics of a cytochrome P-450-dependent fatty acid omega-2 hydroxylase from bacillus megaterium. Biochim Biophys Acta. 1977 Jun 22;487(3):487–494. doi: 10.1016/0005-2760(77)90218-1. [DOI] [PubMed] [Google Scholar]
  12. Miles J. S., Munro A. W., Rospendowski B. N., Smith W. E., McKnight J., Thomson A. J. Domains of the catalytically self-sufficient cytochrome P-450 BM-3. Genetic construction, overexpression, purification and spectroscopic characterization. Biochem J. 1992 Dec 1;288(Pt 2):503–509. doi: 10.1042/bj2880503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Miura Y., Fulco A. J. Omega-1, Omega-2 and Omega-3 hydroxylation of long-chain fatty acids, amides and alcohols by a soluble enzyme system from Bacillus megaterium. Biochim Biophys Acta. 1975 Jun 23;388(3):305–317. doi: 10.1016/0005-2760(75)90089-2. [DOI] [PubMed] [Google Scholar]
  14. Modi S., Behere D. V., Mitra S. Binding of aromatic donor molecules to lactoperoxidase: proton NMR and optical difference spectroscopic studies. Biochim Biophys Acta. 1989 Jul 6;996(3):214–225. doi: 10.1016/0167-4838(89)90250-1. [DOI] [PubMed] [Google Scholar]
  15. Modi S., Primrose W. U., Boyle J. M., Gibson C. F., Lian L. Y., Roberts G. C. NMR studies of substrate binding to cytochrome P450 BM3: comparisons to cytochrome P450 cam. Biochemistry. 1995 Jul 18;34(28):8982–8988. doi: 10.1021/bi00028a006. [DOI] [PubMed] [Google Scholar]
  16. Modi S., Sutcliffe M. J., Primrose W. U., Lian L. Y., Roberts G. C. The catalytic mechanism of cytochrome P450 BM3 involves a 6 A movement of the bound substrate on reduction. Nat Struct Biol. 1996 May;3(5):414–417. doi: 10.1038/nsb0596-414. [DOI] [PubMed] [Google Scholar]
  17. Narhi L. O., Fulco A. J. Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem. 1986 Jun 5;261(16):7160–7169. [PubMed] [Google Scholar]
  18. Narhi L. O., Wen L. P., Fulco A. J. Characterization of the protein expressed in Escherichia coli by a recombinant plasmid containing the Bacillus megaterium cytochrome P-450BM-3 gene. Mol Cell Biochem. 1988 Jan;79(1):63–71. doi: 10.1007/BF00229399. [DOI] [PubMed] [Google Scholar]
  19. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. II. SOLUBILIZATION, PURIFICATION, AND PROPERTIES. J Biol Chem. 1964 Jul;239:2379–2385. [PubMed] [Google Scholar]
  20. Oliver C. F., Modi S., Sutcliffe M. J., Primrose W. U., Lian L. Y., Roberts G. C. A single mutation in cytochrome P450 BM3 changes substrate orientation in a catalytic intermediate and the regiospecificity of hydroxylation. Biochemistry. 1997 Feb 18;36(7):1567–1572. doi: 10.1021/bi962826c. [DOI] [PubMed] [Google Scholar]
  21. Poulos T. L., Finzel B. C., Howard A. J. High-resolution crystal structure of cytochrome P450cam. J Mol Biol. 1987 Jun 5;195(3):687–700. doi: 10.1016/0022-2836(87)90190-2. [DOI] [PubMed] [Google Scholar]
  22. Ravichandran K. G., Boddupalli S. S., Hasermann C. A., Peterson J. A., Deisenhofer J. Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450's. Science. 1993 Aug 6;261(5122):731–736. doi: 10.1126/science.8342039. [DOI] [PubMed] [Google Scholar]
  23. Ruettinger R. T., Wen L. P., Fulco A. J. Coding nucleotide, 5' regulatory, and deduced amino acid sequences of P-450BM-3, a single peptide cytochrome P-450:NADPH-P-450 reductase from Bacillus megaterium. J Biol Chem. 1989 Jul 5;264(19):10987–10995. [PubMed] [Google Scholar]
  24. Sariaslani F. S. Microbial cytochromes P-450 and xenobiotic metabolism. Adv Appl Microbiol. 1991;36:133–178. doi: 10.1016/s0065-2164(08)70453-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES