Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Oct 15;327(Pt 2):553–560. doi: 10.1042/bj3270553

Biological variability in the structures of diphosphoinositol polyphosphates in Dictyostelium discoideum and mammalian cells.

C Albert 1, S T Safrany 1, M E Bembenek 1, K M Reddy 1, K Reddy 1, J Falck 1, M Bröcker 1, S B Shears 1, G W Mayr 1
PMCID: PMC1218829  PMID: 9359429

Abstract

Previous structural analyses of diphosphoinositol polyphosphates in biological systems have relied largely on NMR analysis. For example, in Dictyostelium discoideum, diphosphoinositol pentakisphosphate was determined by NMR to be 4- and/or 6-PPInsP5, and the bisdiphosphoinositol tetrakisphosphate was found to be 4, 5-bisPPInsP4 and/or 5,6-bisPPInsP4 [Laussmann, Eujen, Weisshuhn, Thiel and Vogel (1996) Biochem. J. 315, 715-720]. We now describe three recent technical developments to aid the analysis of these compounds, not just in Dictyostelium, but also in a wider range of biological systems: (i) improved resolution and sensitivity of detection of PPInsP5 isomers by microbore metal-dye-detection HPLC; (ii) the use of the enantiomerically specific properties of a rat hepatic diphosphatase; (iii) chemical synthesis of enantiomerically pure reference standards of all six possible PPInsP5 isomers. Thus we now demonstrate that the major PPInsP5 isomer in Dictyostelium is 6-PPInsP5. Similar findings obtained using the same synthetic standards have been published [Laussmann, Reddy, Reddy, Falck and Vogel (1997) Biochem. J. 322, 31-33]. In addition, we show that 10-25% of the Dictyostelium PPInsP5 pool is comprised of 5-PPInsP5. The biological significance of this new observation was reinforced by our demonstration that 5-PPInsP5 is the predominant PPInsP5 isomer in four different mammalian cell lines (FTC human thyroid cancer cells, Swiss 3T3 fibroblasts, Jurkat T-cells and Chinese hamster ovary cells). The fact that the cellular spectrum of diphosphoinositol polyphosphates varies across phylogenetic boundaries underscores the value of our technological developments for future determinations of the structures of this class of compounds in other systems.

Full Text

The Full Text of this article is available as a PDF (623.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali N., Duden R., Bembenek M. E., Shears S. B. The interaction of coatomer with inositol polyphosphates is conserved in Saccharomyces cerevisiae. Biochem J. 1995 Aug 15;310(Pt 1):279–284. doi: 10.1042/bj3100279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clarke N. G., Dawson R. M. Alkaline O leads to N-transacylation. A new method for the quantitative deacylation of phospholipids. Biochem J. 1981 Apr 1;195(1):301–306. doi: 10.1042/bj1950301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fleischer B., Xie J., Mayrleitner M., Shears S. B., Palmer D. J., Fleischer S. Golgi coatomer binds, and forms K(+)-selective channels gated by, inositol polyphosphates. J Biol Chem. 1994 Jul 8;269(27):17826–17832. [PubMed] [Google Scholar]
  4. Glennon M. C., Shears S. B. Turnover of inositol pentakisphosphates, inositol hexakisphosphate and diphosphoinositol polyphosphates in primary cultured hepatocytes. Biochem J. 1993 Jul 15;293(Pt 2):583–590. doi: 10.1042/bj2930583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Guse A. H., Goldwich A., Weber K., Mayr G. W. Non-radioactive, isomer-specific inositol phosphate mass determinations: high-performance liquid chromatography-micro-metal-dye detection strongly improves speed and sensitivity of analyses from cells and micro-enzyme assays. J Chromatogr B Biomed Appl. 1995 Oct 20;672(2):189–198. doi: 10.1016/0378-4347(95)00219-9. [DOI] [PubMed] [Google Scholar]
  6. Guse A. H., da Silva C. P., Emmrich F., Ashamu G. A., Potter B. V., Mayr G. W. Characterization of cyclic adenosine diphosphate-ribose-induced Ca2+ release in T lymphocyte cell lines. J Immunol. 1995 Oct 1;155(7):3353–3359. [PubMed] [Google Scholar]
  7. Laussmann T., Eujen R., Weisshuhn C. M., Thiel U., Vogel G. Structures of diphospho-myo-inositol pentakisphosphate and bisdiphospho-myo-inositol tetrakisphosphate from Dictyostelium resolved by NMR analysis. Biochem J. 1996 May 1;315(Pt 3):715–720. doi: 10.1042/bj3150715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Laussmann T., Reddy K. M., Reddy K. K., Falck J. R., Vogel G. Diphospho-myo-inositol phosphates from Dictyostelium identified as D-6-diphospho-myo-inositol pentakisphosphate and D-5,6-bisdiphospho-myo-inositol tetrakisphosphate. Biochem J. 1997 Feb 15;322(Pt 1):31–33. doi: 10.1042/bj3220031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Martin J. B., Bakker-Grunwald T., Klein G. 31P-NMR analysis of Entamoeba histolytica. Occurrence of high amounts of two inositol phosphates. Eur J Biochem. 1993 Jun 15;214(3):711–718. doi: 10.1111/j.1432-1033.1993.tb17972.x. [DOI] [PubMed] [Google Scholar]
  10. Mayr G. W. A novel metal-dye detection system permits picomolar-range h.p.l.c. analysis of inositol polyphosphates from non-radioactively labelled cell or tissue specimens. Biochem J. 1988 Sep 1;254(2):585–591. doi: 10.1042/bj2540585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Menniti F. S., Miller R. N., Putney J. W., Jr, Shears S. B. Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells. J Biol Chem. 1993 Feb 25;268(6):3850–3856. [PubMed] [Google Scholar]
  12. Menniti F. S., Oliver K. G., Nogimori K., Obie J. F., Shears S. B., Putney J. W., Jr Origins of myo-inositol tetrakisphosphates in agonist-stimulated rat pancreatoma cells. Stimulation by bombesin of myo-inositol 1,3,4,5,6-pentakisphosphate breakdown to myo-inositol 3,4,5,6-tetrakisphosphate. J Biol Chem. 1990 Jul 5;265(19):11167–11176. [PubMed] [Google Scholar]
  13. Shears S. B., Ali N., Craxton A., Bembenek M. E. Synthesis and metabolism of bis-diphosphoinositol tetrakisphosphate in vitro and in vivo. J Biol Chem. 1995 May 5;270(18):10489–10497. doi: 10.1074/jbc.270.18.10489. [DOI] [PubMed] [Google Scholar]
  14. Stephens L., Radenberg T., Thiel U., Vogel G., Khoo K. H., Dell A., Jackson T. R., Hawkins P. T., Mayr G. W. The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphosphate(s). J Biol Chem. 1993 Feb 25;268(6):4009–4015. [PubMed] [Google Scholar]
  15. Voglmaier S. M., Bembenek M. E., Kaplin A. I., Dormán G., Olszewski J. D., Prestwich G. D., Snyder S. H. Purified inositol hexakisphosphate kinase is an ATP synthase: diphosphoinositol pentakisphosphate as a high-energy phosphate donor. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4305–4310. doi: 10.1073/pnas.93.9.4305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ye W., Ali N., Bembenek M. E., Shears S. B., Lafer E. M. Inhibition of clathrin assembly by high affinity binding of specific inositol polyphosphates to the synapse-specific clathrin assembly protein AP-3. J Biol Chem. 1995 Jan 27;270(4):1564–1568. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES