Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Oct 15;327(Pt 2):601–607. doi: 10.1042/bj3270601

Aging of di-isopropyl-phosphorylated human butyrylcholinesterase.

P Masson 1, P L Fortier 1, C Albaret 1, M T Froment 1, C F Bartels 1, O Lockridge 1
PMCID: PMC1218835  PMID: 9359435

Abstract

Organophosphate-inhibited cholinesterases can be reactivated by nucleophilic compounds. Sometimes phosphylated (phosphorylated or phosphonylated) cholinesterases become progressively refractory to reactivation; this can result from different reactions. The most frequent process, termed 'aging', involves the dealkylation of an alkoxy group on the phosphyl moiety through a carbocation mechanism. In attempting to determine the amino acid residues involved in the aging of butyrylcholinesterase (BuChE), the human BuChE gene was mutated at several positions corresponding to residues located at the rim of the active site gorge and in the vicinity of the active site. Mutant enzymes were expressed in Chinese hamster ovary cells. Wild-type BuChE and mutants were inhibited by di-isopropylfluorophosphate at pH 8.0 and 25 degrees C. Di-isopropyl-phosphorylated enzymes were incubated with the nucleophilic oxime 2-pyridine aldoxime methiodide and their reactivatability was determined. Reactivatability was expressed by the first-order rate constant of aging and/or the half-life of aging (t12). The t12 was found to be of the order of 60 min for wild-type BuChE. Mutations on Glu-197 increased t12 60-fold. Mutation W82A increased t12 13-fold. Mutation D70G increased t12 8-fold. Mutations in the vicinity of the active site serine residue had either moderate or no effect on aging; t12 was doubled for F329C and F329A, increased only 4-fold for the double mutant A328G+F329S, and no change was observed for the A328G mutant, indicating that the isopropoxy chain to be dealkylated does not directly interact with Ala-328 and Phe-329. These results were interpreted by molecular modelling of di-isopropylphosphorylated wild-type and mutant enzymes. Molecular dynamics simulations indicated that the isopropyl chain that is lost interacted with Trp-82, suggesting that Trp-82 has a role in stabilizing the carbonium ion that is released in the dealkylation step. This study emphasized the important role of the Glu-197 carboxylate in stabilizing the developing carbocation, and the allosteric control of the dealkylation reaction by Asp-70. Indeed, although Asp-70 does not interact with the phosphoryl moiety, mutation D70G affects the rate of aging. This indirect control was interpreted in terms of change in the conformational state of Trp-82 owing to internal motions of the Omega loop (Cys-65-Cys-92) in the mutant enzyme.

Full Text

The Full Text of this article is available as a PDF (949.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amitai G., Ashani Y., Gafni A., Silman I. Novel pyrene-containing organophosphates as fluorescent probes for studying aging-induced conformational changes in organophosphate-inhibited acetylcholinesterase. Biochemistry. 1982 Apr 27;21(9):2060–2069. doi: 10.1021/bi00538a013. [DOI] [PubMed] [Google Scholar]
  2. Ashani Y., Gentry M. K., Doctor B. P. Differences in conformational stability between native and phosphorylated acetylcholinesterase as evidenced by a monoclonal antibody. Biochemistry. 1990 Mar 13;29(10):2456–2463. doi: 10.1021/bi00462a004. [DOI] [PubMed] [Google Scholar]
  3. Barak D., Ordentlich A., Bromberg A., Kronman C., Marcus D., Lazar A., Ariel N., Velan B., Shafferman A. Allosteric modulation of acetylcholinesterase activity by peripheral ligands involves a conformational transition of the anionic subsite. Biochemistry. 1995 Nov 28;34(47):15444–15452. doi: 10.1021/bi00047a008. [DOI] [PubMed] [Google Scholar]
  4. Beauregard G., Lum J., Roufogalis B. D. Effect of histidine modification on the aging of organophosphate-inhibited acetylcholinesterase. Biochem Pharmacol. 1981 Nov 1;30(21):2915–2920. doi: 10.1016/0006-2952(81)90252-5. [DOI] [PubMed] [Google Scholar]
  5. Bencsura A., Enyedy I., Kovach I. M. Origins and diversity of the aging reaction in phosphonate adducts of serine hydrolase enzymes: what characteristics of the active site do they probe? Biochemistry. 1995 Jul 18;34(28):8989–8999. doi: 10.1021/bi00028a007. [DOI] [PubMed] [Google Scholar]
  6. Brooks C. L., 3rd, Brünger A., Karplus M. Active site dynamics in protein molecules: a stochastic boundary molecular-dynamics approach. Biopolymers. 1985 May;24(5):843–865. doi: 10.1002/bip.360240509. [DOI] [PubMed] [Google Scholar]
  7. DAVIES D. R., GREEN A. L. The kinetics of reactivation, by oximes, of cholinesterase inhibited by organophosphorus compounds. Biochem J. 1956 Aug;63(4):529–535. doi: 10.1042/bj0630529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dawson R. M. Review of oximes available for treatment of nerve agent poisoning. J Appl Toxicol. 1994 Sep-Oct;14(5):317–331. doi: 10.1002/jat.2550140502. [DOI] [PubMed] [Google Scholar]
  9. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  10. Faerman C., Ripoll D., Bon S., Le Feuvre Y., Morel N., Massoulié J., Sussman J. L., Silman I. Site-directed mutants designed to test back-door hypotheses of acetylcholinesterase function. FEBS Lett. 1996 May 13;386(1):65–71. doi: 10.1016/0014-5793(96)00374-2. [DOI] [PubMed] [Google Scholar]
  11. Grochulski P., Li Y., Schrag J. D., Cygler M. Two conformational states of Candida rugosa lipase. Protein Sci. 1994 Jan;3(1):82–91. doi: 10.1002/pro.5560030111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grunwald J., Segall Y., Shirin E., Waysbort D., Steinberg N., Silman I., Ashani Y. Aged and non-aged pyrenebutyl-containing organophosphoryl conjugates of chymotrypsin. Preparation and comparison by 31P-NMR spectroscopy. Biochem Pharmacol. 1989 Oct 1;38(19):3157–3168. doi: 10.1016/0006-2952(89)90608-4. [DOI] [PubMed] [Google Scholar]
  13. HEILBRONN E. In vitro reactivation and "ageing" of Tabuninhibited blood cholinesterases; studies with N-methyl-pyridinium-2-aldoxime methane sulphonate and N,N'-trimethylene bis (pyridinium-4-aldoxime) dibromide. Biochem Pharmacol. 1963 Jan;12:25–36. doi: 10.1016/0006-2952(63)90006-6. [DOI] [PubMed] [Google Scholar]
  14. HOBBIGER F. Effect of nicotinhydroxamic acid methiodide on human plasma cholinesterase inhibited by organophosphates containing a dialkylphosphato group. Br J Pharmacol Chemother. 1955 Sep;10(3):356–362. doi: 10.1111/j.1476-5381.1955.tb00884.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harel M., Sussman J. L., Krejci E., Bon S., Chanal P., Massoulié J., Silman I. Conversion of acetylcholinesterase to butyrylcholinesterase: modeling and mutagenesis. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10827–10831. doi: 10.1073/pnas.89.22.10827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lockridge O., Blong R. M., Masson P., Froment M. T., Millard C. B., Broomfield C. A. A single amino acid substitution, Gly117His, confers phosphotriesterase (organophosphorus acid anhydride hydrolase) activity on human butyrylcholinesterase. Biochemistry. 1997 Jan 28;36(4):786–795. doi: 10.1021/bi961412g. [DOI] [PubMed] [Google Scholar]
  17. Lockridge O. Genetic variants of human serum cholinesterase influence metabolism of the muscle relaxant succinylcholine. Pharmacol Ther. 1990;47(1):35–60. doi: 10.1016/0163-7258(90)90044-3. [DOI] [PubMed] [Google Scholar]
  18. Masson P., Froment M. T., Bartels C. F., Lockridge O. Importance of aspartate-70 in organophosphate inhibition, oxime re-activation and aging of human butyrylcholinesterase. Biochem J. 1997 Jul 1;325(Pt 1):53–61. doi: 10.1042/bj3250053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Masson P., Goasdoue J. L. Evidence that the conformational stability of 'aged' organophosphate-inhibited cholinesterase is altered. Biochim Biophys Acta. 1986 Feb 14;869(3):304–313. doi: 10.1016/0167-4838(86)90070-1. [DOI] [PubMed] [Google Scholar]
  20. Masson P., Gouet P., Clery C. Pressure and propylene carbonate denaturation of native and "aged" phosphorylated cholinesterase. J Mol Biol. 1994 May 6;238(3):466–478. doi: 10.1006/jmbi.1994.1305. [DOI] [PubMed] [Google Scholar]
  21. Masson P., Marnot B., Lombard J. Y., Morelis P. Etude électrophorétique de la butyrylcholinestérase agée après inhibition par le soman. Biochimie. 1984 Mar;66(3):235–249. doi: 10.1016/0300-9084(84)90067-1. [DOI] [PubMed] [Google Scholar]
  22. Michel H. O., Hackley B. E., Jr, Berkowitz L., List G., Hackley E. B., Gillilan W., Pankau M. Ageing and dealkylation of Soman (pinacolylmethylphosphonofluoridate)-inactivated eel cholinesterase. Arch Biochem Biophys. 1967 Jul;121(1):29–34. doi: 10.1016/0003-9861(67)90006-9. [DOI] [PubMed] [Google Scholar]
  23. Nakagawa S., Yu H. A., Karplus M., Umeyama H. Active site dynamics of acyl-chymotrypsin. Proteins. 1993 Jun;16(2):172–194. doi: 10.1002/prot.340160205. [DOI] [PubMed] [Google Scholar]
  24. Ordentlich A., Kronman C., Barak D., Stein D., Ariel N., Marcus D., Velan B., Shafferman A. Engineering resistance to 'aging' of phosphylated human acetylcholinesterase. Role of hydrogen bond network in the active center. FEBS Lett. 1993 Nov 15;334(2):215–220. doi: 10.1016/0014-5793(93)81714-b. [DOI] [PubMed] [Google Scholar]
  25. Qian N., Kovach I. M. Key active site residues in the inhibition of acetylcholinesterases by soman. FEBS Lett. 1993 Dec 27;336(2):263–266. doi: 10.1016/0014-5793(93)80816-d. [DOI] [PubMed] [Google Scholar]
  26. Saxena A., Doctor B. P., Maxwell D. M., Lenz D. E., Radic Z., Taylor P. The role of glutamate-199 in the aging of cholinesterase. Biochem Biophys Res Commun. 1993 Nov 30;197(1):343–349. doi: 10.1006/bbrc.1993.2481. [DOI] [PubMed] [Google Scholar]
  27. Segall Y., Waysbort D., Barak D., Ariel N., Doctor B. P., Grunwald J., Ashani Y. Direct observation and elucidation of the structures of aged and nonaged phosphorylated cholinesterases by 31P NMR spectroscopy. Biochemistry. 1993 Dec 14;32(49):13441–13450. doi: 10.1021/bi00212a009. [DOI] [PubMed] [Google Scholar]
  28. Shafferman A., Ordentlich A., Barak D., Stein D., Ariel N., Velan B. Aging of phosphylated human acetylcholinesterase: catalytic processes mediated by aromatic and polar residues of the active centre. Biochem J. 1996 Sep 15;318(Pt 3):833–840. doi: 10.1042/bj3180833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Steinberg N., van der Drift A. C., Grunwald J., Segall Y., Shirin E., Haas E., Ashani Y., Silman I. Conformational differences between aged and nonaged pyrenebutyl-containing organophosphoryl conjugates of chymotrypsin as detected by optical spectroscopy. Biochemistry. 1989 Feb 7;28(3):1248–1253. doi: 10.1021/bi00429a044. [DOI] [PubMed] [Google Scholar]
  30. Velan B., Barak D., Ariel N., Leitner M., Bino T., Ordentlich A., Shafferman A. Structural modifications of the omega loop in human acetylcholinesterase. FEBS Lett. 1996 Oct 14;395(1):22–28. doi: 10.1016/0014-5793(96)00995-7. [DOI] [PubMed] [Google Scholar]
  31. Worek F., Kirchner T., Bäcker M., Szinicz L. Reactivation by various oximes of human erythrocyte acetylcholinesterase inhibited by different organophosphorus compounds. Arch Toxicol. 1996;70(8):497–503. doi: 10.1007/s002040050304. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES