Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Nov 1;327(Pt 3):651–662. doi: 10.1042/bj3270651

Cross-species characterization of the promoter region of the cystic fibrosis transmembrane conductance regulator gene reveals multiple levels of regulation.

S Vuillaumier 1, I Dixmeras 1, H Messaï 1, C Lapouméroulie 1, D Lallemand 1, J Gekas 1, F F Chehab 1, C Perret 1, J Elion 1, E Denamur 1
PMCID: PMC1218840  PMID: 9581539

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) gene is highly conserved within vertebrate species. Its pattern of expression in vivo seems to be tightly regulated both developmentally and in a tissue-specific manner, but shows differences with species. To identify transcriptional regulatory elements in the CFTR promoter region, we have used a combined approach based both on the analysis of the chromatin structure in vivo in rat tissues and on evolutionary clues (i.e. phylogenetic footprinting). In CFTR-expressing tissues, 15 DNase I-hypersensitive sites were identified within a 36 kb region encompassing exon 1. Eleven of them are clustered in a 3.5 kb region that exhibits eleven phylogenetic footprints observed when comparing sequences from eight mammalian species representing four orders (Primates, Artiodactylia, Lagomorpha and Rodentia). Comparison of the two sets of data allows the identification of two types of regulatory elements. Some are conserved between species, such as a non-consensus cAMP response element (CRE) and a PMA-responsive element (TRE) located respectively at positions -0.1 and -1.3 kb relative to ATG. Some are species-specific elements such as a 300 bp purine.pyrimidine (Pu.Py) stretch that is present only in rodents. Analysis of protein/DNA interactions in vitro with rat tissue protein extracts on the conserved elements revealed that the TRE site binds a specific heterodimeric complex composed of Fra-2, Jun D and a protein immunologically related to Jun/CRE-binding protein in the duodenum, whereas the CRE-like site binds ATF-1 ubiquitously. Functional analysis in Caco-2 cells showed that the CRE-like site supports a high basal transcriptional activity but is not able by itself to induce a response to cAMP, whereas the TRE site acts as a weak transactivator stimulated by PMA. Lastly, we found that the rodent-specific Pu.Py stretch confers nuclease S1 hypersensitivity under conditions of acidic pH and supercoiling. This indicates a non-B DNA conformation and thus reinforces the biological significance of non-random Pu.Py strand asymmetry in the regulation of transcription. Thus the tight transcriptional regulation of CFTR expression involves the combination of multiple regulatory elements that act in the chromatin environment in vivo. Some of them are conserved throughout evolution, such as the CRE-like element, which is clearly involved in the basal level of transcription; others are species-specific.

Full Text

The Full Text of this article is available as a PDF (794.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bargon J., Trapnell B. C., Chu C. S., Rosenthal E. R., Yoshimura K., Guggino W. B., Dalemans W., Pavirani A., Lecocq J. P., Crystal R. G. Down-regulation of cystic fibrosis transmembrane conductance regulator gene expression by agents that modulate intracellular divalent cations. Mol Cell Biol. 1992 Apr;12(4):1872–1878. doi: 10.1128/mcb.12.4.1872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bargon J., Trapnell B. C., Yoshimura K., Dalemans W., Pavirani A., Lecocq J. P., Crystal R. G. Expression of the cystic fibrosis transmembrane conductance regulator gene can be regulated by protein kinase C. J Biol Chem. 1992 Aug 15;267(23):16056–16060. [PubMed] [Google Scholar]
  3. Begeot M., Shetty U., Kilgore M., Waterman M., Simpson E. Regulation of expression of the CYP11A (P450scc) gene in bovine ovarian luteal cells by forskolin and phorbol esters. J Biol Chem. 1993 Aug 15;268(23):17317–17325. [PubMed] [Google Scholar]
  4. Boise L. H., Petryniak B., Mao X., June C. H., Wang C. Y., Lindsten T., Bravo R., Kovary K., Leiden J. M., Thompson C. B. The NFAT-1 DNA binding complex in activated T cells contains Fra-1 and JunB. Mol Cell Biol. 1993 Mar;13(3):1911–1919. doi: 10.1128/mcb.13.3.1911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boularand S., Darmon M. C., Ravassard P., Mallet J. Characterization of the human tryptophan hydroxylase gene promoter. Transcriptional regulation by cAMP requires a new motif distinct from the cAMP-responsive element. J Biol Chem. 1995 Feb 24;270(8):3757–3764. doi: 10.1074/jbc.270.8.3757. [DOI] [PubMed] [Google Scholar]
  6. Breuer W., Kartner N., Riordan J. R., Cabantchik Z. I. Induction of expression of the cystic fibrosis transmembrane conductance regulator. J Biol Chem. 1992 May 25;267(15):10465–10469. [PubMed] [Google Scholar]
  7. Chou J. L., Rozmahel R., Tsui L. C. Characterization of the promoter region of the cystic fibrosis transmembrane conductance regulator gene. J Biol Chem. 1991 Dec 25;266(36):24471–24476. [PubMed] [Google Scholar]
  8. Costa M., Medcalf R. L. Differential binding of cAMP-responsive-element (CRE)-binding protein-1 and activating transcription factor-2 to a CRE-like element in the human tissue-type plasminogen activator (t-PA) gene promoter correlates with opposite regulation of t-PA by phorbol ester in HT-1080 and HeLa cells. Eur J Biochem. 1996 May 1;237(3):532–538. doi: 10.1111/j.1432-1033.1996.00532.x. [DOI] [PubMed] [Google Scholar]
  9. Denamur E., Chehab F. F. Analysis of the mouse and rat CFTR promoter regions. Hum Mol Genet. 1994 Jul;3(7):1089–1094. doi: 10.1093/hmg/3.7.1089. [DOI] [PubMed] [Google Scholar]
  10. Denamur E., Chehab F. F. Methylation status of CpG sites in the mouse and human CFTR promoters. DNA Cell Biol. 1995 Sep;14(9):811–815. doi: 10.1089/dna.1995.14.811. [DOI] [PubMed] [Google Scholar]
  11. Dessen P., Fondrat C., Valencien C., Mugnier C. BISANCE: a French service for access to biomolecular sequence databases. Comput Appl Biosci. 1990 Oct;6(4):355–356. doi: 10.1093/bioinformatics/6.4.355. [DOI] [PubMed] [Google Scholar]
  12. Engelhardt J. F., Yankaskas J. R., Ernst S. A., Yang Y., Marino C. R., Boucher R. C., Cohn J. A., Wilson J. M. Submucosal glands are the predominant site of CFTR expression in the human bronchus. Nat Genet. 1992 Nov;2(3):240–248. doi: 10.1038/ng1192-240. [DOI] [PubMed] [Google Scholar]
  13. Gross D. S., Garrard W. T. Nuclease hypersensitive sites in chromatin. Annu Rev Biochem. 1988;57:159–197. doi: 10.1146/annurev.bi.57.070188.001111. [DOI] [PubMed] [Google Scholar]
  14. Gumucio D. L., Heilstedt-Williamson H., Gray T. A., Tarlé S. A., Shelton D. A., Tagle D. A., Slightom J. L., Goodman M., Collins F. S. Phylogenetic footprinting reveals a nuclear protein which binds to silencer sequences in the human gamma and epsilon globin genes. Mol Cell Biol. 1992 Nov;12(11):4919–4929. doi: 10.1128/mcb.12.11.4919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hai T., Curran T. Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3720–3724. doi: 10.1073/pnas.88.9.3720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hanvey J. C., Klysik J., Wells R. D. Influence of DNA sequence on the formation of non-B right-handed helices in oligopurine.oligopyrimidine inserts in plasmids. J Biol Chem. 1988 May 25;263(15):7386–7396. [PubMed] [Google Scholar]
  17. Herr I., van Dam H., Angel P. Binding of promoter-associated AP-1 is not altered during induction and subsequent repression of the c-jun promoter by TPA and UV irradiation. Carcinogenesis. 1994 Jun;15(6):1105–1113. doi: 10.1093/carcin/15.6.1105. [DOI] [PubMed] [Google Scholar]
  18. Higgins D. G., Sharp P. M. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988 Dec 15;73(1):237–244. doi: 10.1016/0378-1119(88)90330-7. [DOI] [PubMed] [Google Scholar]
  19. Hirai S. I., Ryseck R. P., Mechta F., Bravo R., Yaniv M. Characterization of junD: a new member of the jun proto-oncogene family. EMBO J. 1989 May;8(5):1433–1439. doi: 10.1002/j.1460-2075.1989.tb03525.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hoeffler J. P., Lustbader J. W., Chen C. Y. Identification of multiple nuclear factors that interact with cyclic adenosine 3',5'-monophosphate response element-binding protein and activating transcription factor-2 by protein-protein interactions. Mol Endocrinol. 1991 Feb;5(2):256–266. doi: 10.1210/mend-5-2-256. [DOI] [PubMed] [Google Scholar]
  21. Koh J., Sferra T. J., Collins F. S. Characterization of the cystic fibrosis transmembrane conductance regulator promoter region. Chromatin context and tissue-specificity. J Biol Chem. 1993 Jul 25;268(21):15912–15921. [PubMed] [Google Scholar]
  22. Lallemand D., Spyrou G., Yaniv M., Pfarr C. M. Variations in Jun and Fos protein expression and AP-1 activity in cycling, resting and stimulated fibroblasts. Oncogene. 1997 Feb 20;14(7):819–830. doi: 10.1038/sj.onc.1200901. [DOI] [PubMed] [Google Scholar]
  23. Lambert M., Colnot S., Suh E., L'Horset F., Blin C., Calliot M. E., Raymondjean M., Thomasset M., Traber P. G., Perret C. cis-Acting elements and transcription factors involved in the intestinal specific expression of the rat calbindin-D9K gene: binding of the intestine-specific transcription factor Cdx-2 to the TATA box. Eur J Biochem. 1996 Mar 15;236(3):778–788. doi: 10.1111/j.1432-1033.1996.00778.x. [DOI] [PubMed] [Google Scholar]
  24. Lamph W. W., Dwarki V. J., Ofir R., Montminy M., Verma I. M. Negative and positive regulation by transcription factor cAMP response element-binding protein is modulated by phosphorylation. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4320–4324. doi: 10.1073/pnas.87.11.4320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Maekawa T., Sakura H., Kanei-Ishii C., Sudo T., Yoshimura T., Fujisawa J., Yoshida M., Ishii S. Leucine zipper structure of the protein CRE-BP1 binding to the cyclic AMP response element in brain. EMBO J. 1989 Jul;8(7):2023–2028. doi: 10.1002/j.1460-2075.1989.tb03610.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Matthews R. P., McKnight G. S. Characterization of the cAMP response element of the cystic fibrosis transmembrane conductance regulator gene promoter. J Biol Chem. 1996 Dec 13;271(50):31869–31877. doi: 10.1074/jbc.271.50.31869. [DOI] [PubMed] [Google Scholar]
  27. McDonald C. D., Hollingsworth M. A., Maher L. J., 3rd Enzymatic and chemical probing of an S1 nuclease-sensitive site upstream from the human CFTR gene. Gene. 1994 Dec 15;150(2):267–274. doi: 10.1016/0378-1119(94)90436-7. [DOI] [PubMed] [Google Scholar]
  28. McDonald R. A., Matthews R. P., Idzerda R. L., McKnight G. S. Basal expression of the cystic fibrosis transmembrane conductance regulator gene is dependent on protein kinase A activity. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7560–7564. doi: 10.1073/pnas.92.16.7560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Medcalf R. L., Rüegg M., Schleuning W. D. A DNA motif related to the cAMP-responsive element and an exon-located activator protein-2 binding site in the human tissue-type plasminogen activator gene promoter cooperate in basal expression and convey activation by phorbol ester and cAMP. J Biol Chem. 1990 Aug 25;265(24):14618–14626. [PubMed] [Google Scholar]
  30. Mukai K., Mitani F., Shimada H., Ishimura Y. Involvement of an AP-1 complex in zone-specific expression of the CYP11B1 gene in the rat adrenal cortex. Mol Cell Biol. 1995 Nov;15(11):6003–6012. doi: 10.1128/mcb.15.11.6003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Muro A. F., Bernath V. A., Kornblihtt A. R. Interaction of the -170 cyclic AMP response element with the adjacent CCAAT box in the human fibronectin gene promoter. J Biol Chem. 1992 Jun 25;267(18):12767–12774. [PubMed] [Google Scholar]
  32. Perret C., L'Horset F., Thomasset M. DNase I-hypersensitive sites are associated, in a tissue-specific manner, with expression of the calbindin-D9k-encoding gene. Gene. 1991 Dec 15;108(2):227–235. doi: 10.1016/0378-1119(91)90438-h. [DOI] [PubMed] [Google Scholar]
  33. Pfarr C. M., Mechta F., Spyrou G., Lallemand D., Carillo S., Yaniv M. Mouse JunD negatively regulates fibroblast growth and antagonizes transformation by ras. Cell. 1994 Feb 25;76(4):747–760. doi: 10.1016/0092-8674(94)90513-4. [DOI] [PubMed] [Google Scholar]
  34. Pittman N., Shue G., LeLeiko N. S., Walsh M. J. Transcription of cystic fibrosis transmembrane conductance regulator requires a CCAAT-like element for both basal and cAMP-mediated regulation. J Biol Chem. 1995 Dec 1;270(48):28848–28857. doi: 10.1074/jbc.270.48.28848. [DOI] [PubMed] [Google Scholar]
  35. Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J. L. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989 Sep 8;245(4922):1066–1073. doi: 10.1126/science.2475911. [DOI] [PubMed] [Google Scholar]
  36. Ryder K., Lanahan A., Perez-Albuerne E., Nathans D. jun-D: a third member of the jun gene family. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1500–1503. doi: 10.1073/pnas.86.5.1500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sassone-Corsi P., Lamph W. W., Kamps M., Verma I. M. fos-associated cellular p39 is related to nuclear transcription factor AP-1. Cell. 1988 Aug 12;54(4):553–560. doi: 10.1016/0092-8674(88)90077-3. [DOI] [PubMed] [Google Scholar]
  38. Sassone-Corsi P. Transcription factors responsive to cAMP. Annu Rev Cell Dev Biol. 1995;11:355–377. doi: 10.1146/annurev.cb.11.110195.002035. [DOI] [PubMed] [Google Scholar]
  39. Smith A. N., Barth M. L., McDowell T. L., Moulin D. S., Nuthall H. N., Hollingsworth M. A., Harris A. A regulatory element in intron 1 of the cystic fibrosis transmembrane conductance regulator gene. J Biol Chem. 1996 Apr 26;271(17):9947–9954. doi: 10.1074/jbc.271.17.9947. [DOI] [PubMed] [Google Scholar]
  40. Smith A. N., Wardle C. J., Harris A. Characterization of DNASE I hypersensitive sites in the 120kb 5' to the CFTR gene. Biochem Biophys Res Commun. 1995 Jun 6;211(1):274–281. doi: 10.1006/bbrc.1995.1807. [DOI] [PubMed] [Google Scholar]
  41. Snouwaert J. N., Brigman K. K., Latour A. M., Malouf N. N., Boucher R. C., Smithies O., Koller B. H. An animal model for cystic fibrosis made by gene targeting. Science. 1992 Aug 21;257(5073):1083–1088. doi: 10.1126/science.257.5073.1083. [DOI] [PubMed] [Google Scholar]
  42. Tizzano E. F., Chitayat D., Buchwald M. Cell-specific localization of CFTR mRNA shows developmentally regulated expression in human fetal tissues. Hum Mol Genet. 1993 Mar;2(3):219–224. doi: 10.1093/hmg/2.3.219. [DOI] [PubMed] [Google Scholar]
  43. Trapnell B. C., Zeitlin P. L., Chu C. S., Yoshimura K., Nakamura H., Guggino W. B., Bargon J., Banks T. C., Dalemans W., Pavirani A. Down-regulation of cystic fibrosis gene mRNA transcript levels and induction of the cystic fibrosis chloride secretory phenotype in epithelial cells by phorbol ester. J Biol Chem. 1991 Jun 5;266(16):10319–10323. [PubMed] [Google Scholar]
  44. Trezise A. E., Buchwald M. In vivo cell-specific expression of the cystic fibrosis transmembrane conductance regulator. Nature. 1991 Oct 3;353(6343):434–437. doi: 10.1038/353434a0. [DOI] [PubMed] [Google Scholar]
  45. Trezise A. E., Chambers J. A., Wardle C. J., Gould S., Harris A. Expression of the cystic fibrosis gene in human foetal tissues. Hum Mol Genet. 1993 Mar;2(3):213–218. doi: 10.1093/hmg/2.3.213. [DOI] [PubMed] [Google Scholar]
  46. Trezise A. E., Linder C. C., Grieger D., Thompson E. W., Meunier H., Griswold M. D., Buchwald M. CFTR expression is regulated during both the cycle of the seminiferous epithelium and the oestrous cycle of rodents. Nat Genet. 1993 Feb;3(2):157–164. doi: 10.1038/ng0293-157. [DOI] [PubMed] [Google Scholar]
  47. Vallejo M. Transcriptional control of gene expression by cAMP-response element binding proteins. J Neuroendocrinol. 1994 Dec;6(6):587–596. doi: 10.1111/j.1365-2826.1994.tb00623.x. [DOI] [PubMed] [Google Scholar]
  48. Vogt P. K., Bos T. J. The oncogene jun and nuclear signalling. Trends Biochem Sci. 1989 May;14(5):172–175. doi: 10.1016/0968-0004(89)90268-5. [DOI] [PubMed] [Google Scholar]
  49. Vuillaumier S., Kaltenboeck B., Lecointre G., Lehn P., Denamur E. Phylogenetic analysis of cystic fibrosis transmembrane conductance regulator gene in mammalian species argues for the development of a rabbit model for cystic fibrosis. Mol Biol Evol. 1997 Apr;14(4):372–380. doi: 10.1093/oxfordjournals.molbev.a025773. [DOI] [PubMed] [Google Scholar]
  50. Wu C. The 5' ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature. 1980 Aug 28;286(5776):854–860. doi: 10.1038/286854a0. [DOI] [PubMed] [Google Scholar]
  51. Xu G., Goodridge A. G. Characterization of a polypyrimidine/polypurine tract in the promoter of the gene for chicken malic enzyme. J Biol Chem. 1996 Jul 5;271(27):16008–16019. doi: 10.1074/jbc.271.27.16008. [DOI] [PubMed] [Google Scholar]
  52. Yoshimura K., Nakamura H., Trapnell B. C., Chu C. S., Dalemans W., Pavirani A., Lecocq J. P., Crystal R. G. Expression of the cystic fibrosis transmembrane conductance regulator gene in cells of non-epithelial origin. Nucleic Acids Res. 1991 Oct 11;19(19):5417–5423. doi: 10.1093/nar/19.19.5417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Yoshimura K., Nakamura H., Trapnell B. C., Dalemans W., Pavirani A., Lecocq J. P., Crystal R. G. The cystic fibrosis gene has a "housekeeping"-type promoter and is expressed at low levels in cells of epithelial origin. J Biol Chem. 1991 May 15;266(14):9140–9144. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES