Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Nov 1;327(Pt 3):735–739. doi: 10.1042/bj3270735

Relative contributions of Na+-dependent phosphate co-transporters to phosphate transport in mouse kidney: RNase H-mediated hybrid depletion analysis.

K Miyamoto 1, H Segawa 1, K Morita 1, T Nii 1, S Tatsumi 1, Y Taketani 1, E Takeda 1
PMCID: PMC1218851  PMID: 9581550

Abstract

Reabsorption of Pi in the proximal tubule of the kidney is an important determinant of Pi homoeostasis. At least three types (types I-III) of high-affinity Na+-dependent Pi co-transporters have been identified in mammalian kidneys. The relative roles of these three types of Na+/Pi co-transporters in Pi transport in mouse kidney cortex have now been investigated by RNase H-mediated hybrid depletion. Whereas isolated brush-border membrane vesicles showed the presence of two kinetically distinct Na+/Pi co-transport systems (high Km-low Vmax and low Km-high Vmax), Xenopus oocytes, microinjected with polyadenylated [poly(A)+] RNA from mouse kidney cortex, showed only the high-affinity Pi uptake system. Kidney poly(A)+ RNA was incubated in vitro with antisense oligonucleotides corresponding to Npt-1 (type I), NaPi -7 (type II) or Glvr-1 (type III) Na+/Pi co-transporter mRNAs, and then with RNase H. Injection of such treated RNA preparations into Xenopus oocytes revealed that an NaPi-7 antisense oligonucleotide that resulted in complete degradation of NaPi-7 mRNA (as revealed by Northern blot analysis), also induced complete inhibition of Pi uptake. Degradation of Npt-1 or Glvr-1 mRNAs induced by corresponding antisense oligonucleotides had no effect on Pi transport, which was subsequently measured in oocytes. These results indicate that the type II Na+/Pi co-transporter NaPi-7 mediated most Na+-dependent Pi transport in mouse kidney cortex.

Full Text

The Full Text of this article is available as a PDF (257.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barchfeld G. L., Deamer D. W. Alcohol effects on lipid bilayer permeability to protons and potassium: relation to the action of general anesthetics. Biochim Biophys Acta. 1988 Sep 15;944(1):40–48. doi: 10.1016/0005-2736(88)90314-8. [DOI] [PubMed] [Google Scholar]
  2. Busch A. E., Schuster A., Waldegger S., Wagner C. A., Zempel G., Broer S., Biber J., Murer H., Lang F. Expression of a renal type I sodium/phosphate transporter (NaPi-1) induces a conductance in Xenopus oocytes permeable for organic and inorganic anions. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5347–5351. doi: 10.1073/pnas.93.11.5347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  4. Chong S. S., Kozak C. A., Liu L., Kristjansson K., Dunn S. T., Bourdeau J. E., Hughes M. R. Cloning, genetic mapping, and expression analysis of a mouse renal sodium-dependent phosphate cotransporter. Am J Physiol. 1995 Jun;268(6 Pt 2):F1038–F1045. doi: 10.1152/ajprenal.1995.268.6.F1038. [DOI] [PubMed] [Google Scholar]
  5. Cohen B. E. The permeability of liposomes to nonelectrolytes. I. Activation energies for permeation. J Membr Biol. 1975;20(3-4):205–234. doi: 10.1007/BF01870637. [DOI] [PubMed] [Google Scholar]
  6. Collins J. F., Ghishan F. K. Molecular cloning, functional expression, tissue distribution, and in situ hybridization of the renal sodium phosphate (Na+/P(i)) transporter in the control and hypophosphatemic mouse. FASEB J. 1994 Aug;8(11):862–868. doi: 10.1096/fasebj.8.11.8070635. [DOI] [PubMed] [Google Scholar]
  7. Deamer D. W., Nichols J. W. Proton-hydroxide permeability of liposomes. Proc Natl Acad Sci U S A. 1983 Jan;80(1):165–168. doi: 10.1073/pnas.80.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Johann S. V., van Zeijl M., Cekleniak J., O'Hara B. Definition of a domain of GLVR1 which is necessary for infection by gibbon ape leukemia virus and which is highly polymorphic between species. J Virol. 1993 Nov;67(11):6733–6736. doi: 10.1128/jvi.67.11.6733-6736.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kavanaugh M. P., Miller D. G., Zhang W., Law W., Kozak S. L., Kabat D., Miller A. D. Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7071–7075. doi: 10.1073/pnas.91.15.7071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Levi M., Arar M., Kaissling B., Murer H., Biber J. Low-Pi diet increases the abundance of an apical protein in rat proximal-tubular S3 segments. Pflugers Arch. 1994 Jan;426(1-2):5–11. doi: 10.1007/BF00374664. [DOI] [PubMed] [Google Scholar]
  11. Levi M., Kempson S. A., Lötscher M., Biber J., Murer H. Molecular regulation of renal phosphate transport. J Membr Biol. 1996 Nov;154(1):1–9. doi: 10.1007/s002329900127. [DOI] [PubMed] [Google Scholar]
  12. Li H., Xie Z. Molecular cloning of two rat Na+/Pi cotransporters: evidence for differential tissue expression of transcripts. Cell Mol Biol Res. 1995;41(5):451–460. [PubMed] [Google Scholar]
  13. Magagnin S., Werner A., Markovich D., Sorribas V., Stange G., Biber J., Murer H. Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5979–5983. doi: 10.1073/pnas.90.13.5979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mayer L. D., Hope M. J., Cullis P. R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta. 1986 Jun 13;858(1):161–168. doi: 10.1016/0005-2736(86)90302-0. [DOI] [PubMed] [Google Scholar]
  15. Meyerhof W., Richter D. Identification of G protein-coupled receptors by RNase H-mediated hybrid depletion using Xenopus laevis oocytes as expression system. FEBS Lett. 1990 Jun 18;266(1-2):192–194. doi: 10.1016/0014-5793(90)81537-x. [DOI] [PubMed] [Google Scholar]
  16. Miller D. G., Edwards R. H., Miller A. D. Cloning of the cellular receptor for amphotropic murine retroviruses reveals homology to that for gibbon ape leukemia virus. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):78–82. doi: 10.1073/pnas.91.1.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Minami H., Kim J. R., Tada K., Takahashi F., Miyamoto K., Nakabou Y., Sakai K., Hagihira H. Inhibition of glucose absorption by phlorizin affects intestinal functions in rats. Gastroenterology. 1993 Sep;105(3):692–697. doi: 10.1016/0016-5085(93)90884-f. [DOI] [PubMed] [Google Scholar]
  18. Miyamoto K., Tatsumi S., Morimoto A., Minami H., Yamamoto H., Sone K., Taketani Y., Nakabou Y., Oka T., Takeda E. Characterization of the rabbit intestinal fructose transporter (GLUT5). Biochem J. 1994 Nov 1;303(Pt 3):877–883. doi: 10.1042/bj3030877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Miyamoto K., Tatsumi S., Sonoda T., Yamamoto H., Minami H., Taketani Y., Takeda E. Cloning and functional expression of a Na(+)-dependent phosphate co-transporter from human kidney: cDNA cloning and functional expression. Biochem J. 1995 Jan 1;305(Pt 1):81–85. doi: 10.1042/bj3050081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nakagawa N., Arab N., Ghishan F. K. Characterization of the defect in the Na(+)-phosphate transporter in vitamin D-resistant hypophosphatemic mice. J Biol Chem. 1991 Jul 25;266(21):13616–13620. [PubMed] [Google Scholar]
  21. O'Hara B., Johann S. V., Klinger H. P., Blair D. G., Rubinson H., Dunn K. J., Sass P., Vitek S. M., Robins T. Characterization of a human gene conferring sensitivity to infection by gibbon ape leukemia virus. Cell Growth Differ. 1990 Mar;1(3):119–127. [PubMed] [Google Scholar]
  22. Olah Z., Lehel C., Anderson W. B., Eiden M. V., Wilson C. A. The cellular receptor for gibbon ape leukemia virus is a novel high affinity sodium-dependent phosphate transporter. J Biol Chem. 1994 Oct 14;269(41):25426–25431. [PubMed] [Google Scholar]
  23. Sorribas V., Markovich D., Hayes G., Stange G., Forgo J., Biber J., Murer H. Cloning of a Na/Pi cotransporter from opossum kidney cells. J Biol Chem. 1994 Mar 4;269(9):6615–6621. [PubMed] [Google Scholar]
  24. Tenenhouse H. S., Beck L. Renal Na(+)-phosphate cotransporter gene expression in X-linked Hyp and Gy mice. Kidney Int. 1996 Apr;49(4):1027–1032. doi: 10.1038/ki.1996.149. [DOI] [PubMed] [Google Scholar]
  25. Verri T., Markovich D., Perego C., Norbis F., Stange G., Sorribas V., Biber J., Murer H. Cloning of a rabbit renal Na-Pi cotransporter, which is regulated by dietary phosphate. Am J Physiol. 1995 Apr;268(4 Pt 2):F626–F633. doi: 10.1152/ajprenal.1995.268.4.F626. [DOI] [PubMed] [Google Scholar]
  26. Werner A., Moore M. L., Mantei N., Biber J., Semenza G., Murer H. Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9608–9612. doi: 10.1073/pnas.88.21.9608. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES