Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Nov 1;327(Pt 3):747–757. doi: 10.1042/bj3270747

Tetramerization domain of human butyrylcholinesterase is at the C-terminus.

R M Blong 1, E Bedows 1, O Lockridge 1
PMCID: PMC1218853  PMID: 9581552

Abstract

Butyrylcholinesterase (BChE) in human serum consists predominantly of tetramers. Recombinant BChE, however, expressed in Chinese hamster ovary (CHO) cells, consists of approx. 55% dimers, 10-30% tetramers and 15-40% monomers. To determine the origin of the monomer species we added the FLAG epitope (epitope tag, amino acid sequence DYKDDDDK) to the C-terminus of the enzyme, and expressed BChE-FLAG in CHO cells. We found that secreted, active monomers had lost their FLAG epitope, suggesting that the monomers were made by proteolysis of dimers or tetramers at the C-terminus. To estimate the number of amino acids that could be deleted from the C-terminus without losing BChE activity, we expressed deletion mutants. We found that deletion of up to 50 amino acids from the C-terminus yielded active monomers, but that deletion of 51 amino acids destroyed BChE activity and caused the inactive protein to remain within the cell. Deletion of eight or more amino acids from the N-terminus also resulted in inactive protein that remained inside the cell. Monomeric BChE had wild-type Km and kcat values (8 microM and 24000 min-1 for butyrylthiocholine) and showed substrate activation. The Cys-571-->Ala mutant, though incapable of forming the interchain disulphide bond, had nearly the same amount of tetrameric BChE as recombinant wild-type BChE. These results support the conclusion that the tetramerization domain of BChE is at the C-terminus, within the terminal 50 amino acids, and that the interchain disulphide bond is not essential for tetramerization. Molecular modelling suggested that the tetramerization domain was a four-helix bundle, stabilized by interactions of seven conserved aromatic amino acids.

Full Text

The Full Text of this article is available as a PDF (472.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bedows E., Huth J. R., Suganuma N., Bartels C. F., Boime I., Ruddon R. W. Disulfide bond mutations affect the folding of the human chorionic gonadotropin-beta subunit in transfected Chinese hamster ovary cells. J Biol Chem. 1993 Jun 5;268(16):11655–11662. [PubMed] [Google Scholar]
  2. Bon S., Coussen F., Massoulié J. Quaternary associations of acetylcholinesterase. II. The polyproline attachment domain of the collagen tail. J Biol Chem. 1997 Jan 31;272(5):3016–3021. doi: 10.1074/jbc.272.5.3016. [DOI] [PubMed] [Google Scholar]
  3. Bon S., Massoulié J. Quaternary associations of acetylcholinesterase. I. Oligomeric associations of T subunits with and without the amino-terminal domain of the collagen tail. J Biol Chem. 1997 Jan 31;272(5):3007–3015. doi: 10.1074/jbc.272.5.3007. [DOI] [PubMed] [Google Scholar]
  4. Bourne Y., Taylor P., Marchot P. Acetylcholinesterase inhibition by fasciculin: crystal structure of the complex. Cell. 1995 Nov 3;83(3):503–512. doi: 10.1016/0092-8674(95)90128-0. [DOI] [PubMed] [Google Scholar]
  5. Cousin X., Bon S., Duval N., Massoulié J., Bon C. Cloning and expression of acetylcholinesterase from Bungarus fasciatus venom. A new type of cooh-terminal domain; involvement of a positively charged residue in the peripheral site. J Biol Chem. 1996 Jun 21;271(25):15099–15108. doi: 10.1074/jbc.271.25.15099. [DOI] [PubMed] [Google Scholar]
  6. Davidson D. J., Castellino F. J. Oligosaccharide structures present on asparagine-289 of recombinant human plasminogen expressed in a Chinese hamster ovary cell line. Biochemistry. 1991 Jan 22;30(3):625–633. doi: 10.1021/bi00217a006. [DOI] [PubMed] [Google Scholar]
  7. Doctor B. P., Raveh L., Wolfe A. D., Maxwell D. M., Ashani Y. Enzymes as pretreatment drugs for organophosphate toxicity. Neurosci Biobehav Rev. 1991 Spring;15(1):123–128. doi: 10.1016/s0149-7634(05)80103-4. [DOI] [PubMed] [Google Scholar]
  8. Duval N., Krejci E., Grassi J., Coussen F., Massoulié J., Bon S. Molecular architecture of acetylcholinesterase collagen-tailed forms; construction of a glycolipid-tailed tetramer. EMBO J. 1992 Sep;11(9):3255–3261. doi: 10.1002/j.1460-2075.1992.tb05403.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  10. Friedman A. M., Fischmann T. O., Steitz T. A. Crystal structure of lac repressor core tetramer and its implications for DNA looping. Science. 1995 Jun 23;268(5218):1721–1727. doi: 10.1126/science.7792597. [DOI] [PubMed] [Google Scholar]
  11. Gibney G., Taylor P. Biosynthesis of Torpedo acetylcholinesterase in mammalian cells. Functional expression and mutagenesis of the glycophospholipid-anchored form. J Biol Chem. 1990 Jul 25;265(21):12576–12583. [PubMed] [Google Scholar]
  12. Gough N. R., Randall W. R. Oligomerization of chicken acetylcholinesterase does not require intersubunit disulfide bonds. J Neurochem. 1995 Dec;65(6):2734–2741. doi: 10.1046/j.1471-4159.1995.65062734.x. [DOI] [PubMed] [Google Scholar]
  13. Harbury P. B., Zhang T., Kim P. S., Alber T. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science. 1993 Nov 26;262(5138):1401–1407. doi: 10.1126/science.8248779. [DOI] [PubMed] [Google Scholar]
  14. Haupt H., Heide K., Zwisler O., Schwick H. G. Isolierung und physikalisch-chemische Charakterisierung der Cholinesterase aus Humanserum. Blut. 1966 Nov;14(2):65–75. doi: 10.1007/BF01633493. [DOI] [PubMed] [Google Scholar]
  15. Heider H., Brodbeck U. Monomerization of tetrameric bovine caudate nucleus acetylcholinesterase. Implications for hydrophobic assembly and membrane anchor attachment site. Biochem J. 1992 Jan 1;281(Pt 1):279–284. doi: 10.1042/bj2810279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. James D. C., Freedman R. B., Hoare M., Ogonah O. W., Rooney B. C., Larionov O. A., Dobrovolsky V. N., Lagutin O. V., Jenkins N. N-glycosylation of recombinant human interferon-gamma produced in different animal expression systems. Biotechnology (N Y) 1995 Jun;13(6):592–596. doi: 10.1038/nbt0695-592. [DOI] [PubMed] [Google Scholar]
  17. KARNOVSKY M. J., ROOTS L. A "DIRECT-COLORING" THIOCHOLINE METHOD FOR CHOLINESTERASES. J Histochem Cytochem. 1964 Mar;12:219–221. doi: 10.1177/12.3.219. [DOI] [PubMed] [Google Scholar]
  18. Kerem A., Kronman C., Bar-Nun S., Shafferman A., Velan B. Interrelations between assembly and secretion of recombinant human acetylcholinesterase. J Biol Chem. 1993 Jan 5;268(1):180–184. [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lee W., Harvey T. S., Yin Y., Yau P., Litchfield D., Arrowsmith C. H. Solution structure of the tetrameric minimum transforming domain of p53. Nat Struct Biol. 1994 Dec;1(12):877–890. doi: 10.1038/nsb1294-877. [DOI] [PubMed] [Google Scholar]
  21. Levy D., Ashani Y. Synthesis and in vitro properties of a powerful quaternary methylphosphonate inhibitor of acetylcholinesterase. A new marker in blood-brain barrier research. Biochem Pharmacol. 1986 Apr 1;35(7):1079–1085. doi: 10.1016/0006-2952(86)90142-5. [DOI] [PubMed] [Google Scholar]
  22. Lockridge O., Adkins S., La Du B. N. Location of disulfide bonds within the sequence of human serum cholinesterase. J Biol Chem. 1987 Sep 25;262(27):12945–12952. [PubMed] [Google Scholar]
  23. Lockridge O., Bartels C. F., Vaughan T. A., Wong C. K., Norton S. E., Johnson L. L. Complete amino acid sequence of human serum cholinesterase. J Biol Chem. 1987 Jan 15;262(2):549–557. [PubMed] [Google Scholar]
  24. Lockridge O., Blong R. M., Masson P., Froment M. T., Millard C. B., Broomfield C. A. A single amino acid substitution, Gly117His, confers phosphotriesterase (organophosphorus acid anhydride hydrolase) activity on human butyrylcholinesterase. Biochemistry. 1997 Jan 28;36(4):786–795. doi: 10.1021/bi961412g. [DOI] [PubMed] [Google Scholar]
  25. Lockridge O., Eckerson H. W., La Du B. N. Interchain disulfide bonds and subunit organization in human serum cholinesterase. J Biol Chem. 1979 Sep 10;254(17):8324–8330. [PubMed] [Google Scholar]
  26. Lockridge O., La Du B. N. Loss of the interchain disulfide peptide and dissociation of the tetramer following limited proteolysis of native human serum cholinesterase. J Biol Chem. 1982 Oct 25;257(20):12012–12018. [PubMed] [Google Scholar]
  27. Marchot P., Ravelli R. B., Raves M. L., Bourne Y., Vellom D. C., Kanter J., Camp S., Sussman J. L., Taylor P. Soluble monomeric acetylcholinesterase from mouse: expression, purification, and crystallization in complex with fasciculin. Protein Sci. 1996 Apr;5(4):672–679. doi: 10.1002/pro.5560050411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Masson P., Balny C. Conformational plasticity of butyrylcholinesterase as revealed by high pressure experiments. Biochim Biophys Acta. 1990 Dec 5;1041(3):223–231. doi: 10.1016/0167-4838(90)90276-l. [DOI] [PubMed] [Google Scholar]
  29. Masson P., Legrand P., Bartels C. F., Froment M. T., Schopfer L. M., Lockridge O. Role of aspartate 70 and tryptophan 82 in binding of succinyldithiocholine to human butyrylcholinesterase. Biochemistry. 1997 Feb 25;36(8):2266–2277. doi: 10.1021/bi962484a. [DOI] [PubMed] [Google Scholar]
  30. Massoulié J., Pezzementi L., Bon S., Krejci E., Vallette F. M. Molecular and cellular biology of cholinesterases. Prog Neurobiol. 1993 Jul;41(1):31–91. doi: 10.1016/0301-0082(93)90040-y. [DOI] [PubMed] [Google Scholar]
  31. McGee T. P., Cheng H. H., Kumagai H., Omura S., Simoni R. D. Degradation of 3-hydroxy-3-methylglutaryl-CoA reductase in endoplasmic reticulum membranes is accelerated as a result of increased susceptibility to proteolysis. J Biol Chem. 1996 Oct 11;271(41):25630–25638. doi: 10.1074/jbc.271.41.25630. [DOI] [PubMed] [Google Scholar]
  32. Millard C. B., Lockridge O., Broomfield C. A. Design and expression of organophosphorus acid anhydride hydrolase activity in human butyrylcholinesterase. Biochemistry. 1995 Dec 12;34(49):15925–15933. doi: 10.1021/bi00049a007. [DOI] [PubMed] [Google Scholar]
  33. Mozhaev V. V., Heremans K., Frank J., Masson P., Balny C. High pressure effects on protein structure and function. Proteins. 1996 Jan;24(1):81–91. doi: 10.1002/(SICI)1097-0134(199601)24:1<81::AID-PROT6>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  34. Otsu M., Urade R., Kito M., Omura F., Kikuchi M. A possible role of ER-60 protease in the degradation of misfolded proteins in the endoplasmic reticulum. J Biol Chem. 1995 Jun 23;270(25):14958–14961. doi: 10.1074/jbc.270.25.14958. [DOI] [PubMed] [Google Scholar]
  35. Radić Z., Pickering N. A., Vellom D. C., Camp S., Taylor P. Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors. Biochemistry. 1993 Nov 16;32(45):12074–12084. doi: 10.1021/bi00096a018. [DOI] [PubMed] [Google Scholar]
  36. Raveh L., Grunwald J., Marcus D., Papier Y., Cohen E., Ashani Y. Human butyrylcholinesterase as a general prophylactic antidote for nerve agent toxicity. In vitro and in vivo quantitative characterization. Biochem Pharmacol. 1993 Jun 22;45(12):2465–2474. doi: 10.1016/0006-2952(93)90228-o. [DOI] [PubMed] [Google Scholar]
  37. Satoh M., Hosoi S., Sato S. Chinese hamster ovary cells continuously secrete a cysteine endopeptidase. In Vitro Cell Dev Biol. 1990 Nov;26(11):1101–1104. doi: 10.1007/BF02624447. [DOI] [PubMed] [Google Scholar]
  38. Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991 Aug 23;253(5022):872–879. doi: 10.1126/science.1678899. [DOI] [PubMed] [Google Scholar]
  39. Urade R., Takenaka Y., Kito M. Protein degradation by ERp72 from rat and mouse liver endoplasmic reticulum. J Biol Chem. 1993 Oct 15;268(29):22004–22009. [PubMed] [Google Scholar]
  40. Velan B., Grosfeld H., Kronman C., Leitner M., Gozes Y., Lazar A., Flashner Y., Marcus D., Cohen S., Shafferman A. The effect of elimination of intersubunit disulfide bonds on the activity, assembly, and secretion of recombinant human acetylcholinesterase. Expression of acetylcholinesterase Cys-580----Ala mutant. J Biol Chem. 1991 Dec 15;266(35):23977–23984. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES