Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Nov 1;327(Pt 3):899–907. doi: 10.1042/bj3270899

T-tubule membranes from chicken skeletal muscle possess an enzymic cascade for degradation of extracellular ATP.

J Delgado 1, G Moro 1, A Saborido 1, A Megías 1
PMCID: PMC1218873  PMID: 9581572

Abstract

The chicken T-tubule Mg2+-ATPase is an integral membrane glycoprotein that presents properties different from those of other ATPases located in skeletal muscle cells and exhibits ATP-hydrolysing activity on the extracellular side of the transverse tubule (TT) membranes. In this study we demonstrate that TT vesicles purified from chicken skeletal muscle possess ecto-ADPase and ecto-5'-nucleotidase activities that, along with ecto-ATPase, are able to sequentially degrade extracellular ATP to ADP, AMP and adenosine. Characterization studies of these TT ectonucleotidases revealed remarkable differences between ecto-ATPase and ecto-ADPase activities with respect to thermal stability, temperature dependence of the hydrolytic activity, effect of ionic strength, kinetic behaviour, divalent cation preference and responses to azide, N-ethylmaleimide, NaSCN, Triton X-100 and concanavalin A. Ecto-ATPase, but not ecto-ADPase, was inhibited by a polyclonal antibody against the chicken TT ecto-ATPase. On the basis of these results we propose that ATP and ADP hydrolysis are accomplished by two distinct enzymes and therefore the TT ecto-ATPase is not an apyrase. 5'-Nucleotidase activity was inhibited by adenosine 5'-[alpha,beta-methylene]diphosphate and concanavalin A, followed simple Michaelis-Menten kinetics and was released from the membranes by treatment with phosphatidylinositol-specific phospholipase C, indicating that AMP hydrolysis in T-tubules is catalysed by a typical ecto-5'-nucleotidase. Results obtained from electrophoresis experiments under native conditions suggest that ecto-ATPase, ecto-ADPase and 5'-nucleotidase might be associated, forming functional complexes in the T-tubule membranes. The TT ectonucleotidases constitute an enzymic cascade for the degradation of extracellular ATP that might be involved in the regulation of purinergic signalling in the muscle fibre.

Full Text

The Full Text of this article is available as a PDF (454.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beeler T. J., Gable K. S., Keffer J. M. Characterization of the membrane bound Mg2+-ATPase of rat skeletal muscle. Biochim Biophys Acta. 1983 Oct 12;734(2):221–234. doi: 10.1016/0005-2736(83)90120-7. [DOI] [PubMed] [Google Scholar]
  2. Beeler T. J., Wang T., Gable K., Lee S. Comparison of the rat microsomal Mg-ATPase of various tissues. Arch Biochem Biophys. 1985 Dec;243(2):644–654. doi: 10.1016/0003-9861(85)90542-9. [DOI] [PubMed] [Google Scholar]
  3. Beukers M. W., Pirovano I. M., van Weert A., Kerkhof C. J., IJzerman A. P., Soudijn W. Characterization of ecto-ATPase on human blood cells. A physiological role in platelet aggregation? Biochem Pharmacol. 1993 Dec 3;46(11):1959–1966. doi: 10.1016/0006-2952(93)90637-c. [DOI] [PubMed] [Google Scholar]
  4. Christoforidis S., Papamarcaki T., Galaris D., Kellner R., Tsolas O. Purification and properties of human placental ATP diphosphohydrolase. Eur J Biochem. 1995 Nov 15;234(1):66–74. doi: 10.1111/j.1432-1033.1995.066_c.x. [DOI] [PubMed] [Google Scholar]
  5. Culić O., Sabolić I., Zanić-Grubisić T. The stepwise hydrolysis of adenine nucleotides by ectoenzymes of rat renal brush-border membranes. Biochim Biophys Acta. 1990 Nov 30;1030(1):143–151. doi: 10.1016/0005-2736(90)90249-n. [DOI] [PubMed] [Google Scholar]
  6. Cunha R. A., Sebastião A. M. Adenosine and adenine nucleotides are independently released from both the nerve terminals and the muscle fibres upon electrical stimulation of the innervated skeletal muscle of the frog. Pflugers Arch. 1993 Sep;424(5-6):503–510. doi: 10.1007/BF00374914. [DOI] [PubMed] [Google Scholar]
  7. Cunha R. A., Sebastião A. M. Extracellular metabolism of adenine nucleotides and adenosine in the innervated skeletal muscle of the frog. Eur J Pharmacol. 1991 May 2;197(1):83–92. doi: 10.1016/0014-2999(91)90368-z. [DOI] [PubMed] [Google Scholar]
  8. Cunningham H. B., Yazaki P. J., Domingo R. C., Oades K. V., Bohlen H., Sabbadini R. A., Dahms A. S. The skeletal muscle transverse tubular Mg-ATPase: identity with Mg-ATPases of smooth muscle and brain. Arch Biochem Biophys. 1993 May 15;303(1):32–43. doi: 10.1006/abbi.1993.1252. [DOI] [PubMed] [Google Scholar]
  9. Dhalla N. S., Zhao D. Cell membrane Ca2+/Mg2+ ATPase. Prog Biophys Mol Biol. 1988;52(1):1–37. doi: 10.1016/0079-6107(88)90006-5. [DOI] [PubMed] [Google Scholar]
  10. Dieckhoff J., Knebel H., Heidemann M., Mannherz H. G. An improved procedure for purifying 5'-nucleotidase from various sources. Evidence for tissue and species differences in their molecular mass and affinity for F-actin. Eur J Biochem. 1985 Sep 2;151(2):377–383. doi: 10.1111/j.1432-1033.1985.tb09112.x. [DOI] [PubMed] [Google Scholar]
  11. Dombrowski K. E., Trevillyan J. M., Cone J. C., Lu Y., Phillips C. A. Identification and partial characterization of an ectoATPase expressed by human natural killer cells. Biochemistry. 1993 Jul 6;32(26):6515–6522. doi: 10.1021/bi00077a004. [DOI] [PubMed] [Google Scholar]
  12. Dubyak G. R., el-Moatassim C. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol. 1993 Sep;265(3 Pt 1):C577–C606. doi: 10.1152/ajpcell.1993.265.3.C577. [DOI] [PubMed] [Google Scholar]
  13. Filippini A., Taffs R. E., Agui T., Sitkovsky M. V. Ecto-ATPase activity in cytolytic T-lymphocytes. Protection from the cytolytic effects of extracellular ATP. J Biol Chem. 1990 Jan 5;265(1):334–340. [PubMed] [Google Scholar]
  14. Frassetto S. S., Dias R. D., Sarkis J. J. Characterization of an ATP diphosphohydrolase activity (APYRASE, EC 3.6.1.5) in rat blood platelets. Mol Cell Biochem. 1993 Dec 8;129(1):47–55. doi: 10.1007/BF00926575. [DOI] [PubMed] [Google Scholar]
  15. Gentry M. K., Olsson R. A. A simple, specific, radioisotopic assay for 5'-nucleotidase. Anal Biochem. 1975 Apr;64(2):624–627. doi: 10.1016/0003-2697(75)90478-9. [DOI] [PubMed] [Google Scholar]
  16. Gordon E. L., Pearson J. D., Dickinson E. S., Moreau D., Slakey L. L. The hydrolysis of extracellular adenine nucleotides by arterial smooth muscle cells. Regulation of adenosine production at the cell surface. J Biol Chem. 1989 Nov 15;264(32):18986–18995. [PubMed] [Google Scholar]
  17. Hamlyn J. M., Senior A. E. Evidence that Mg2+- or Ca2+-activated adenosine triphosphatase in rat pancreas is a plasma-membrane ecto-enzyme. Biochem J. 1983 Jul 15;214(1):59–68. doi: 10.1042/bj2140059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hidalgo C., Gonzalez M. E., Lagos R. Characterization of the Ca2+- or Mg2+-ATPase of transverse tubule membranes isolated from rabbit skeletal muscle. J Biol Chem. 1983 Nov 25;258(22):13937–13945. [PubMed] [Google Scholar]
  19. Hohmann J., Kowalewski H., Vogel M., Zimmermann H. Isolation of a Ca2+ or Mg(2+)-activated ATPase (ecto-ATPase) from bovine brain synaptic membranes. Biochim Biophys Acta. 1993 Oct 10;1152(1):146–154. doi: 10.1016/0005-2736(93)90241-q. [DOI] [PubMed] [Google Scholar]
  20. Häggblad J., Heilbronn E. P2-purinoceptor-stimulated phosphoinositide turnover in chick myotubes. Calcium mobilization and the role of guanyl nucleotide-binding proteins. FEBS Lett. 1988 Aug 1;235(1-2):133–136. doi: 10.1016/0014-5793(88)81248-1. [DOI] [PubMed] [Google Scholar]
  21. Kang J. J., Cunningham H. B., Jachec C., Priest A., Dahms A. S., Sabbadini R. A. Direct effects of phorbol esters and diacylglycerols on the T-tubule Mg(2+)-ATPase. Arch Biochem Biophys. 1991 Oct;290(1):214–223. doi: 10.1016/0003-9861(91)90611-l. [DOI] [PubMed] [Google Scholar]
  22. Kurihara K., Hosoi K., Ueha T. Characterization of ecto-nucleoside triphosphatase on A-431 human epidermoidal carcinoma cells. Enzyme. 1992;46(4-5):213–220. doi: 10.1159/000468790. [DOI] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Laliberte J. F., Beaudoin A. R. Sequential hydrolysis of the gamma- and beta-phosphate groups of ATP by the ATP diphosphohydrolase from pig pancreas. Biochim Biophys Acta. 1983 Jan 12;742(1):9–15. doi: 10.1016/0167-4838(83)90352-7. [DOI] [PubMed] [Google Scholar]
  26. Lin S. H., Russell W. E. Two Ca2+-dependent ATPases in rat liver plasma membrane. The previously purified (Ca2+-Mg2+)-ATPase is not a Ca2+-pump but an ecto-ATPase. J Biol Chem. 1988 Sep 5;263(25):12253–12258. [PubMed] [Google Scholar]
  27. Lin S. H. The rat liver plasma membrane high affinity (Ca2+-Mg2+)-ATPase is not a calcium pump. Comparison with ATP-dependent calcium transporter. J Biol Chem. 1985 Sep 15;260(20):10976–10980. [PubMed] [Google Scholar]
  28. Meghji P., Pearson J. D., Slakey L. L. Kinetics of extracellular ATP hydrolysis by microvascular endothelial cells from rat heart. Biochem J. 1995 Jun 15;308(Pt 3):725–731. doi: 10.1042/bj3080725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Meghji P., Pearson J. D., Slakey L. L. Regulation of extracellular adenosine production by ectonucleotidases of adult rat ventricular myocytes. Am J Physiol. 1992 Jul;263(1 Pt 2):H40–H47. doi: 10.1152/ajpheart.1992.263.1.H40. [DOI] [PubMed] [Google Scholar]
  30. Moodie F. D., Baum H., Butterworth P. J., Peters T. J. Purification and characterisation of bovine spleen ADPase. Eur J Biochem. 1991 Dec 18;202(3):1209–1215. doi: 10.1111/j.1432-1033.1991.tb16492.x. [DOI] [PubMed] [Google Scholar]
  31. Moulton M. P., Sabbadini R. A., Norton K. C., Dahms A. S. Studies on the transverse tubule membrane Mg-ATPase. Lectin-induced alterations of kinetic behavior. J Biol Chem. 1986 Sep 15;261(26):12244–12251. [PubMed] [Google Scholar]
  32. Müller J., Rocha J. B., Battastini A. M., Sarkis J. J., Dias R. D. Postnatal development of ATPase-ADPase activities in synaptosomal fraction from cerebral cortex of rats. Neurochem Int. 1993 Nov;23(5):471–477. doi: 10.1016/0197-0186(93)90132-o. [DOI] [PubMed] [Google Scholar]
  33. Ortega A., Lepock J. R. Use of thermal analysis to distinguish magnesium and calcium stimulated ATPase activity in isolated transverse tubules from skeletal muscle. Biochim Biophys Acta. 1995 Jan 26;1233(1):7–13. doi: 10.1016/0005-2736(94)00243-i. [DOI] [PubMed] [Google Scholar]
  34. Pearson J. D., Carleton J. S., Gordon J. L. Metabolism of adenine nucleotides by ectoenzymes of vascular endothelial and smooth-muscle cells in culture. Biochem J. 1980 Aug 15;190(2):421–429. doi: 10.1042/bj1900421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Picher M., Béliveau R., Potier M., Savaria D., Rousseau E., Beaudoin A. R. Demonstration of an ectoATP-diphosphohydrolase (E.C.3.6.1.5.) in non-vascular smooth muscles of the bovine trachea. Biochim Biophys Acta. 1994 Jul 6;1200(2):167–174. doi: 10.1016/0304-4165(94)90132-5. [DOI] [PubMed] [Google Scholar]
  36. Picher M., Côté Y. P., Béliveau R., Potier M., Beaudoin A. R. Demonstration of a novel type of ATP-diphosphohydrolase (EC 3.6.1.5) in the bovine lung. J Biol Chem. 1993 Mar 5;268(7):4699–4703. [PubMed] [Google Scholar]
  37. Plesner L., Juul B., Skriver E., Aalkjaer C. Characterisation of Ca2+ or Mg(2+)-dependent nucleoside triphosphatase from rat mesenteric small arteries. Biochim Biophys Acta. 1991 Aug 26;1067(2):191–200. doi: 10.1016/0005-2736(91)90043-8. [DOI] [PubMed] [Google Scholar]
  38. Sabbadini R. A., Dahms A. S. Biochemical properties of isolated transverse tubular membranes. J Bioenerg Biomembr. 1989 Apr;21(2):163–213. doi: 10.1007/BF00812068. [DOI] [PubMed] [Google Scholar]
  39. Sabbadini R. A., Okamoto V. R. The distribution of ATPase activities in purified transverse tubular membranes. Arch Biochem Biophys. 1983 May;223(1):107–119. doi: 10.1016/0003-9861(83)90576-3. [DOI] [PubMed] [Google Scholar]
  40. Saborido A., Moro G., Megías A. Transverse tubule Mg(2+)-ATPase of skeletal muscle. Evidence for extracellular orientation of the chicken and rabbit enzymes. J Biol Chem. 1991 Dec 5;266(34):23490–23498. [PubMed] [Google Scholar]
  41. Stout J. G., Kirley T. L. Purification and characterization of the ecto-Mg-ATPase of chicken gizzard smooth muscle. J Biochem Biophys Methods. 1994 Jul;29(1):61–75. doi: 10.1016/0165-022x(94)90057-4. [DOI] [PubMed] [Google Scholar]
  42. Stout J. G., Strobel R. S., Kirley T. L. Properties of and proteins associated with the extracellular ATPase of chicken gizzard smooth muscle. A monoclonal antibody study. J Biol Chem. 1995 May 19;270(20):11845–11850. doi: 10.1074/jbc.270.20.11845. [DOI] [PubMed] [Google Scholar]
  43. Strobel R. S., Nagy A. K., Knowles A. F., Buegel J., Rosenberg M. D. Chicken oviductal ecto-ATP-diphosphohydrolase. Purification and characterization. J Biol Chem. 1996 Jul 5;271(27):16323–16331. doi: 10.1074/jbc.271.27.16323. [DOI] [PubMed] [Google Scholar]
  44. Sévigny J., Côté Y. P., Beaudoin A. R. Purification of pancreas type-I ATP diphosphohydrolase and identification by affinity labelling with the 5'-p-fluorosulphonylbenzoyladenosine ATP analogue. Biochem J. 1995 Dec 1;312(Pt 2):351–356. doi: 10.1042/bj3120351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. TAUSSKY H. H., SHORR E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953 Jun;202(2):675–685. [PubMed] [Google Scholar]
  46. Thomas S. A., Zawisa M. J., Lin X., Hume R. I. A receptor that is highly specific for extracellular ATP in developing chick skeletal muscle in vitro. Br J Pharmacol. 1991 Aug;103(4):1963–1969. doi: 10.1111/j.1476-5381.1991.tb12360.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Torres M., Pintor J., Miras-Portugal M. T. Presence of ectonucleotidases in cultured chromaffin cells: hydrolysis of extracellular adenine nucleotides. Arch Biochem Biophys. 1990 May 15;279(1):37–44. doi: 10.1016/0003-9861(90)90460-g. [DOI] [PubMed] [Google Scholar]
  48. Treuheit M. J., Vaghy P. L., Kirley T. L. Mg(2+)-ATPase from rabbit skeletal muscle transverse tubules is 67-kilodalton glycoprotein. J Biol Chem. 1992 Jun 15;267(17):11777–11782. [PubMed] [Google Scholar]
  49. Van Erum M., Lemmens R., Berden J., Teuchy H., Vanduffel L. Identification and partial purification of (Ca2+ or Mg2+)-ATPase in renal brush-border membranes. Eur J Biochem. 1995 Jan 15;227(1-2):150–160. doi: 10.1111/j.1432-1033.1995.tb20371.x. [DOI] [PubMed] [Google Scholar]
  50. Yagi K., Arai Y., Kato N., Hirota K., Miura Y. Purification of ATP diphosphohydrolase from bovine aorta microsomes. Eur J Biochem. 1989 Apr 1;180(3):509–513. doi: 10.1111/j.1432-1033.1989.tb14675.x. [DOI] [PubMed] [Google Scholar]
  51. Yagi K., Shinbo M., Hashizume M., Shimba L. S., Kurimura S., Miura Y. ATP diphosphohydrolase is responsible for ecto-ATPase and ecto-ADPase activities in bovine aorta endothelial and smooth muscle cells. Biochem Biophys Res Commun. 1991 Nov 14;180(3):1200–1206. doi: 10.1016/s0006-291x(05)81323-3. [DOI] [PubMed] [Google Scholar]
  52. Zhao D., Elimban V., Dhalla N. S. Characterization of the purified rat heart plasma membrane Ca2+/Mg2+ ATPase. Mol Cell Biochem. 1991 Oct 16;107(2):151–160. doi: 10.1007/BF00225518. [DOI] [PubMed] [Google Scholar]
  53. Zimmermann H. Biochemistry, localization and functional roles of ecto-nucleotidases in the nervous system. Prog Neurobiol. 1996 Aug;49(6):589–618. doi: 10.1016/0301-0082(96)00026-3. [DOI] [PubMed] [Google Scholar]
  54. Zlotnick G. W., Gottlieb M. A sensitive staining technique for the detection of phosphohydrolase activities after polyacrylamide gel electrophoresis. Anal Biochem. 1986 Feb 15;153(1):121–125. doi: 10.1016/0003-2697(86)90069-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES