Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Nov 1;327(Pt 3):917–923. doi: 10.1042/bj3270917

Major co-localization of the extracellular-matrix degradative enzymes heparanase and gelatinase in tertiary granules of human neutrophils.

F Mollinedo 1, M Nakajima 1, A Llorens 1, E Barbosa 1, S Callejo 1, C Gajate 1, A Fabra 1
PMCID: PMC1218875  PMID: 9581574

Abstract

The expression of cell-surface adhesion proteins and the release of extracellular-matrix degradative enzymes constitute crucial processes for the attachment of neutrophils to the endothelium and for the subsequent extravasation of these cells through the endothelial layer. We have analysed in resting human neutrophils the subcellular localization of heparanase, a heparan-sulphate-degrading endoglycosidase that can degrade basement-membrane components, thereby facilitating neutrophil passage into the tissue during an inflammatory reaction. By subcellular fractionation of postnuclear supernatants from resting human neutrophils on continuous sucrose gradients, we have found that heparanase activity was mainly located in gelatinase-containing tertiary granules. Using a specific antibody, the 96-kDa heparanase protein was further located in the gelatinase-rich subcellular fractions. Following immunoblotting and immunoprecipitation analysis in the distinct subcellular fractions, we also found co-localization of heparanase and Mo1 (CD11b/CD18), a leucocyte integrin involved in the attachment of neutrophils to the endothelium, in the fractions enriched in gelatinase-containing tertiary granules. Treatment of human neutrophils with tumour necrosis factor or granulocyte/macrophage colony-stimulating factor induced an increase in the CD11b/CD18 cell-surface expression, as well as the release of both gelatinase (matrix metalloproteinase-9) and heparanase, but not of other granule markers, indicating a major co-localization of gelatinase, heparanase and CD11b/CD18 in the same organelle. Furthermore, confocal laser scanning microscopy using specific antibodies against gelatinase and heparanase revealed a major co-localization of both enzymes in intracellular cytoplasmic granules. The major localization of heparanase and CD11b/CD18 in the gelatinase-containing tertiary granule supports the notion that mobilization of this organelle can regulate extravasation of human neutrophils.

Full Text

The Full Text of this article is available as a PDF (309.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bainton D. F., Miller L. J., Kishimoto T. K., Springer T. A. Leukocyte adhesion receptors are stored in peroxidase-negative granules of human neutrophils. J Exp Med. 1987 Dec 1;166(6):1641–1653. doi: 10.1084/jem.166.6.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bainton D. F., Ullyot J. L., Farquhar M. G. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J Exp Med. 1971 Oct 1;134(4):907–934. doi: 10.1084/jem.134.4.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balsinde J., Diez E., Mollinedo F. Arachidonic acid release from diacylglycerol in human neutrophils. Translocation of diacylglycerol-deacylating enzyme activities from an intracellular pool to plasma membrane upon cell activation. J Biol Chem. 1991 Aug 25;266(24):15638–15643. [PubMed] [Google Scholar]
  4. Borregaard N., Lollike K., Kjeldsen L., Sengeløv H., Bastholm L., Nielsen M. H., Bainton D. F. Human neutrophil granules and secretory vesicles. Eur J Haematol. 1993 Oct;51(4):187–198. doi: 10.1111/j.1600-0609.1993.tb00629.x. [DOI] [PubMed] [Google Scholar]
  5. Borregaard N., Miller L. J., Springer T. A. Chemoattractant-regulated mobilization of a novel intracellular compartment in human neutrophils. Science. 1987 Sep 4;237(4819):1204–1206. doi: 10.1126/science.3629236. [DOI] [PubMed] [Google Scholar]
  6. Bretz U., Baggiolini M. Biochemical and morphological characterization of azurophil and specific granules of human neutrophilic polymorphonuclear leukocytes. J Cell Biol. 1974 Oct;63(1):251–269. doi: 10.1083/jcb.63.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carlos T. M., Harlan J. M. Leukocyte-endothelial adhesion molecules. Blood. 1994 Oct 1;84(7):2068–2101. [PubMed] [Google Scholar]
  8. Cooper T. W., Eisen A. Z., Stricklin G. P., Welgus H. G. Platelet-derived collagenase inhibitor: characterization and subcellular localization. Proc Natl Acad Sci U S A. 1985 May;82(9):2779–2783. doi: 10.1073/pnas.82.9.2779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Devarajan P., Johnston J. J., Ginsberg S. S., Van Wart H. E., Berliner N. Structure and expression of neutrophil gelatinase cDNA. Identity with type IV collagenase from HT1080 cells. J Biol Chem. 1992 Dec 15;267(35):25228–25232. [PubMed] [Google Scholar]
  10. Dewald B., Bretz U., Baggiolini M. Release of gelatinase from a novel secretory compartment of human neutrophils. J Clin Invest. 1982 Sep;70(3):518–525. doi: 10.1172/JCI110643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Díaz-González F., González-Alvaro I., Campanero M. R., Mollinedo F., del Pozo M. A., Muñoz C., Pivel J. P., Sánchez-Madrid F. Prevention of in vitro neutrophil-endothelial attachment through shedding of L-selectin by nonsteroidal antiinflammatory drugs. J Clin Invest. 1995 Apr;95(4):1756–1765. doi: 10.1172/JCI117853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goldberg G. I., Strongin A., Collier I. E., Genrich L. T., Marmer B. L. Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J Biol Chem. 1992 Mar 5;267(7):4583–4591. [PubMed] [Google Scholar]
  13. Graves V., Gabig T., McCarthy L., Strour E. F., Leemhuis T., English D. Simultaneous mobilization of Mac-1 (CD11b/CD18) and formyl peptide chemoattractant receptors in human neutrophils. Blood. 1992 Aug 1;80(3):776–787. [PubMed] [Google Scholar]
  14. Hasty K. A., Pourmotabbed T. F., Goldberg G. I., Thompson J. P., Spinella D. G., Stevens R. M., Mainardi C. L. Human neutrophil collagenase. A distinct gene product with homology to other matrix metalloproteinases. J Biol Chem. 1990 Jul 15;265(20):11421–11424. [PubMed] [Google Scholar]
  15. Hibbs M. S., Bainton D. F. Human neutrophil gelatinase is a component of specific granules. J Clin Invest. 1989 Nov;84(5):1395–1402. doi: 10.1172/JCI114312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hibbs M. S., Hasty K. A., Seyer J. M., Kang A. H., Mainardi C. L. Biochemical and immunological characterization of the secreted forms of human neutrophil gelatinase. J Biol Chem. 1985 Feb 25;260(4):2493–2500. [PubMed] [Google Scholar]
  17. Jones D. H., Schmalstieg F. C., Dempsey K., Krater S. S., Nannen D. D., Smith C. W., Anderson D. C. Subcellular distribution and mobilization of MAC-1 (CD11b/CD18) in neonatal neutrophils. Blood. 1990 Jan 15;75(2):488–498. [PubMed] [Google Scholar]
  18. Juarez J., Clayman G., Nakajima M., Tanabe K. K., Saya H., Nicolson G. L., Boyd D. Role and regulation of expression of 92-kDa type-IV collagenase (MMP-9) in 2 invasive squamous-cell-carcinoma cell lines of the oral cavity. Int J Cancer. 1993 Aug 19;55(1):10–18. doi: 10.1002/ijc.2910550104. [DOI] [PubMed] [Google Scholar]
  19. Keizer G. D., Borst J., Figdor C. G., Spits H., Miedema F., Terhorst C., De Vries J. E. Biochemical and functional characteristics of the human leukocyte membrane antigen family LFA-1, Mo-1 and p150,95. Eur J Immunol. 1985 Nov;15(11):1142–1148. doi: 10.1002/eji.1830151114. [DOI] [PubMed] [Google Scholar]
  20. Kjeldsen L., Bainton D. F., Sengeløv H., Borregaard N. Structural and functional heterogeneity among peroxidase-negative granules in human neutrophils: identification of a distinct gelatinase-containing granule subset by combined immunocytochemistry and subcellular fractionation. Blood. 1993 Nov 15;82(10):3183–3191. [PubMed] [Google Scholar]
  21. Kjeldsen L., Bjerrum O. W., Askaa J., Borregaard N. Subcellular localization and release of human neutrophil gelatinase, confirming the existence of separate gelatinase-containing granules. Biochem J. 1992 Oct 15;287(Pt 2):603–610. doi: 10.1042/bj2870603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kjeldsen L., Johnsen A. H., Sengeløv H., Borregaard N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem. 1993 May 15;268(14):10425–10432. [PubMed] [Google Scholar]
  23. Kjeldsen L., Sengeløv H., Lollike K., Nielsen M. H., Borregaard N. Isolation and characterization of gelatinase granules from human neutrophils. Blood. 1994 Mar 15;83(6):1640–1649. [PubMed] [Google Scholar]
  24. Lacal P., Pulido R., Sánchez-Madrid F., Cabañas C., Mollinedo F. Intracellular localization of a leukocyte adhesion glycoprotein family in the tertiary granules of human neutrophils. Biochem Biophys Res Commun. 1988 Jul 29;154(2):641–647. doi: 10.1016/0006-291x(88)90187-8. [DOI] [PubMed] [Google Scholar]
  25. Lacal P., Pulido R., Sánchez-Madrid F., Mollinedo F. Intracellular location of T200 and Mo1 glycoproteins in human neutrophils. J Biol Chem. 1988 Jul 15;263(20):9946–9951. [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Liotta L. A., Steeg P. S., Stetler-Stevenson W. G. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991 Jan 25;64(2):327–336. doi: 10.1016/0092-8674(91)90642-c. [DOI] [PubMed] [Google Scholar]
  28. Lopez A. F., Williamson D. J., Gamble J. R., Begley C. G., Harlan J. M., Klebanoff S. J., Waltersdorph A., Wong G., Clark S. C., Vadas M. A. Recombinant human granulocyte-macrophage colony-stimulating factor stimulates in vitro mature human neutrophil and eosinophil function, surface receptor expression, and survival. J Clin Invest. 1986 Nov;78(5):1220–1228. doi: 10.1172/JCI112705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Marchetti D., McQuillan D. J., Spohn W. C., Carson D. D., Nicolson G. L. Neurotrophin stimulation of human melanoma cell invasion: selected enhancement of heparanase activity and heparanase degradation of specific heparan sulfate subpopulations. Cancer Res. 1996 Jun 15;56(12):2856–2863. [PubMed] [Google Scholar]
  30. Matzner Y., Bar-Ner M., Yahalom J., Ishai-Michaeli R., Fuks Z., Vlodavsky I. Degradation of heparan sulfate in the subendothelial extracellular matrix by a readily released heparanase from human neutrophils. Possible role in invasion through basement membranes. J Clin Invest. 1985 Oct;76(4):1306–1313. doi: 10.1172/JCI112104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Matzner Y., Vlodavsky I., Bar-Ner M., Ishai-Michaeli R., Tauber A. I. Subcellular localization of heparanase in human neutrophils. J Leukoc Biol. 1992 Jun;51(6):519–524. doi: 10.1002/jlb.51.6.519. [DOI] [PubMed] [Google Scholar]
  32. Mollinedo F., Gajate C., Schneider D. L. Cytochrome b co-fractionates with gelatinase-containing granules in human neutrophils. Mol Cell Biochem. 1991 Jun 26;105(1):49–60. doi: 10.1007/BF00230374. [DOI] [PubMed] [Google Scholar]
  33. Mollinedo F., Gómez-Cambronero J., Cano E., Sánchez-Crespo M. Intracellular localization of platelet-activating factor synthesis in human neutrophils. Biochem Biophys Res Commun. 1988 Aug 15;154(3):1232–1239. doi: 10.1016/0006-291x(88)90271-9. [DOI] [PubMed] [Google Scholar]
  34. Mollinedo F. Isolation of human neutrophil plasma membranes employing neutrophil cytoplasts and changes in the cell-surface proteins upon cell activation. Biochim Biophys Acta. 1986 Sep 25;861(1):33–43. doi: 10.1016/0005-2736(86)90368-8. [DOI] [PubMed] [Google Scholar]
  35. Mollinedo F., Manara F. S., Schneider D. L. Acidification activity of human neutrophils. Tertiary granules as a site of ATP-dependent acidification. J Biol Chem. 1986 Jan 25;261(3):1077–1082. [PubMed] [Google Scholar]
  36. Mollinedo F., Nieto J. M., Andreu J. M. Cytoplasmic microtubules in human neutrophil degranulation: reversible inhibition by the colchicine analogue 2-methoxy-5-(2',3',4'-trimethoxyphenyl)-2,4,6-cycloheptatrien-1- one. Mol Pharmacol. 1989 Oct;36(4):547–555. [PubMed] [Google Scholar]
  37. Mollinedo F., Perez-Sala D., Gajate C., Jimenez B., Rodriguez P., Lacal J. C. Localization of rap1 and rap2 proteins in the gelatinase-containing granules of human neutrophils. FEBS Lett. 1993 Jul 12;326(1-3):209–214. doi: 10.1016/0014-5793(93)81792-x. [DOI] [PubMed] [Google Scholar]
  38. Mollinedo F., Pulido R., Lacal P. M., Sanchez-Madrid F. Mobilization of gelatinase-rich granules as a regulatory mechanism of early functional responses in human neutrophils. Scand J Immunol. 1991 Jul;34(1):33–43. doi: 10.1111/j.1365-3083.1991.tb01518.x. [DOI] [PubMed] [Google Scholar]
  39. Mollinedo F., Schneider D. L. Intracellular organelle motility and membrane fusion processes in human neutrophils upon cell activation. FEBS Lett. 1987 Jun 15;217(2):158–162. doi: 10.1016/0014-5793(87)80655-5. [DOI] [PubMed] [Google Scholar]
  40. Mollinedo F., Schneider D. L. Subcellular localization of cytochrome b and ubiquinone in a tertiary granule of resting human neutrophils and evidence for a proton pump ATPase. J Biol Chem. 1984 Jun 10;259(11):7143–7150. [PubMed] [Google Scholar]
  41. Morel F., Berthier S., Guillot M., Zaoui P., Massoubre C., Didier F., Vignais P. V. Human neutrophil gelatinase is a collagenase type IV. Biochem Biophys Res Commun. 1993 Feb 26;191(1):269–274. doi: 10.1006/bbrc.1993.1212. [DOI] [PubMed] [Google Scholar]
  42. Morel F., Dewald B., Berthier S., Zaoui P., Dianoux A. C., Vignais P. V., Baggiolini M. Further characterization of the gelatinase-containing particles of human neutrophils. Biochim Biophys Acta. 1994 Dec 15;1201(3):373–380. doi: 10.1016/0304-4165(94)90065-5. [DOI] [PubMed] [Google Scholar]
  43. Murphy G., Bretz U., Baggiolini M., Reynolds J. J. The latent collagenase and gelatinase of human polymorphonuclear neutrophil leucocytes. Biochem J. 1980 Nov 15;192(2):517–525. doi: 10.1042/bj1920517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Murphy G., Ward R., Hembry R. M., Reynolds J. J., Kühn K., Tryggvason K. Characterization of gelatinase from pig polymorphonuclear leucocytes. A metalloproteinase resembling tumour type IV collagenase. Biochem J. 1989 Mar 1;258(2):463–472. doi: 10.1042/bj2580463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Nakajima M., Chop A. M. Tumor invasion and extracellular matrix degradative enzymes: regulation of activity by organ factors. Semin Cancer Biol. 1991 Apr;2(2):115–127. [PubMed] [Google Scholar]
  46. Nakajima M., Irimura T., Nicolson G. L. Heparanases and tumor metastasis. J Cell Biochem. 1988 Feb;36(2):157–167. doi: 10.1002/jcb.240360207. [DOI] [PubMed] [Google Scholar]
  47. Nakajima M., Morikawa K., Fabra A., Bucana C. D., Fidler I. J. Influence of organ environment on extracellular matrix degradative activity and metastasis of human colon carcinoma cells. J Natl Cancer Inst. 1990 Dec 19;82(24):1890–1898. doi: 10.1093/jnci/82.24.1890. [DOI] [PubMed] [Google Scholar]
  48. Parkos C. A., Cochrane C. G., Schmitt M., Jesaitis A. J. Regulation of the oxidative response of human granulocytes to chemoattractants. No evidence for stimulated traffic of redox enzymes between endo and plasma membranes. J Biol Chem. 1985 Jun 10;260(11):6541–6547. [PubMed] [Google Scholar]
  49. Petrequin P. R., Todd R. F., 3rd, Devall L. J., Boxer L. A., Curnutte J. T., 3rd Association between gelatinase release and increased plasma membrane expression of the Mo1 glycoprotein. Blood. 1987 Feb;69(2):605–610. [PubMed] [Google Scholar]
  50. Pourmotabbed T., Solomon T. L., Hasty K. A., Mainardi C. L. Characteristics of 92 kDa type IV collagenase/gelatinase produced by granulocytic leukemia cells: structure, expression of cDNA in E. coli and enzymic properties. Biochim Biophys Acta. 1994 Jan 11;1204(1):97–107. doi: 10.1016/0167-4838(94)90038-8. [DOI] [PubMed] [Google Scholar]
  51. Sengeløv H., Kjeldsen L., Borregaard N. Control of exocytosis in early neutrophil activation. J Immunol. 1993 Feb 15;150(4):1535–1543. [PubMed] [Google Scholar]
  52. Sengeløv H., Kjeldsen L., Diamond M. S., Springer T. A., Borregaard N. Subcellular localization and dynamics of Mac-1 (alpha m beta 2) in human neutrophils. J Clin Invest. 1993 Sep;92(3):1467–1476. doi: 10.1172/JCI116724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Smith G. P., Sharp G., Peters T. J. Isolation and characterization of alkaline phosphatase-containing granules (phosphasomes) from human polymorphonuclear leucocytes. J Cell Sci. 1985 Jun;76:167–178. doi: 10.1242/jcs.76.1.167. [DOI] [PubMed] [Google Scholar]
  54. Welch D. R., Fabra A., Nakajima M. Transforming growth factor beta stimulates mammary adenocarcinoma cell invasion and metastatic potential. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7678–7682. doi: 10.1073/pnas.87.19.7678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Wilhelm S. M., Collier I. E., Marmer B. L., Eisen A. Z., Grant G. A., Goldberg G. I. SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem. 1989 Oct 15;264(29):17213–17221. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES