Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Nov 15;328(Pt 1):1–12. doi: 10.1042/bj3280001

The DNA damage-recognition problem in human and other eukaryotic cells: the XPA damage binding protein.

J E Cleaver 1, J C States 1
PMCID: PMC1218880  PMID: 9359827

Abstract

The capacity of human and other eukaryotic cells to recognize a disparate variety of damaged sites in DNA, and selectively excise and repair them, resides in a deceptively small simple protein, a 38-42 kDa zinc-finger binding protein, XPA (xeroderma pigmentosum group A), that has no inherent catalytic properties. One key to its damage-recognition ability resides in a DNA-binding domain which combines a zinc finger and a single-strand binding region which may infiltrate small single-stranded regions caused by helix-destabilizing lesions. Another is the augmentation of its binding capacity by interactions with other single-stranded binding proteins and helicases which co-operate in the binding and are unloaded at the binding site to facilitate further unwinding of the DNA and subsequent catalysis. The properties of these reactions suggest there must be considerable conformational changes in XPA and associated proteins to provide a flexible fit to a wide variety of damaged structures in the DNA.

Full Text

The Full Text of this article is available as a PDF (832.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aboussekhra A., Biggerstaff M., Shivji M. K., Vilpo J. A., Moncollin V., Podust V. N., Protić M., Hübscher U., Egly J. M., Wood R. D. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell. 1995 Mar 24;80(6):859–868. doi: 10.1016/0092-8674(95)90289-9. [DOI] [PubMed] [Google Scholar]
  2. Afzal V., Feeney L., Thomas G. H., Volpe J. P., Cleaver J. E. Sister chromatid exchanges in cells defective in mismatch, post-replication and excision repair. Mutagenesis. 1995 Sep;10(5):457–462. doi: 10.1093/mutage/10.5.457. [DOI] [PubMed] [Google Scholar]
  3. Asahara H., Wistort P. M., Bank J. F., Bakerian R. H., Cunningham R. P. Purification and characterization of Escherichia coli endonuclease III from the cloned nth gene. Biochemistry. 1989 May 16;28(10):4444–4449. doi: 10.1021/bi00436a048. [DOI] [PubMed] [Google Scholar]
  4. Asahina H., Kuraoka I., Shirakawa M., Morita E. H., Miura N., Miyamoto I., Ohtsuka E., Okada Y., Tanaka K. The XPA protein is a zinc metalloprotein with an ability to recognize various kinds of DNA damage. Mutat Res. 1994 Nov;315(3):229–237. doi: 10.1016/0921-8777(94)90034-5. [DOI] [PubMed] [Google Scholar]
  5. Berg R. J., de Vries A., van Steeg H., de Gruijl F. R. Relative susceptibilities of XPA knockout mice and their heterozygous and wild-type littermates to UVB-induced skin cancer. Cancer Res. 1997 Feb 15;57(4):581–584. [PubMed] [Google Scholar]
  6. Biggerstaff M., Szymkowski D. E., Wood R. D. Co-correction of the ERCC1, ERCC4 and xeroderma pigmentosum group F DNA repair defects in vitro. EMBO J. 1993 Sep;12(9):3685–3692. doi: 10.1002/j.1460-2075.1993.tb06043.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bochkarev A., Pfuetzner R. A., Edwards A. M., Frappier L. Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature. 1997 Jan 9;385(6612):176–181. doi: 10.1038/385176a0. [DOI] [PubMed] [Google Scholar]
  8. Bohr V. A. DNA repair fine structure and its relations to genomic instability. Carcinogenesis. 1995 Dec;16(12):2885–2892. doi: 10.1093/carcin/16.12.2885. [DOI] [PubMed] [Google Scholar]
  9. Cheo D. L., Meira L. B., Hammer R. E., Burns D. K., Doughty A. T., Friedberg E. C. Synergistic interactions between XPC and p53 mutations in double-mutant mice: neural tube abnormalities and accelerated UV radiation-induced skin cancer. Curr Biol. 1996 Dec 1;6(12):1691–1694. doi: 10.1016/s0960-9822(02)70794-x. [DOI] [PubMed] [Google Scholar]
  10. Clayton D. A., Doda J. N., Friedberg E. C. The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2777–2781. doi: 10.1073/pnas.71.7.2777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cleaver J. E., Charles W. C., McDowell M. L., Sadinski W. J., Mitchell D. L. Overexpression of the XPA repair gene increases resistance to ultraviolet radiation in human cells by selective repair of DNA damage. Cancer Res. 1995 Dec 15;55(24):6152–6160. [PubMed] [Google Scholar]
  12. Cleaver J. E., Charles W. C., Thomas G. H., McDowell M. L. A deletion and an insertion in the alleles for the xeroderma pigmentosum (XPA) DNA-binding protein in mildly affected patients. Hum Mol Genet. 1995 Sep;4(9):1685–1687. doi: 10.1093/hmg/4.9.1685. [DOI] [PubMed] [Google Scholar]
  13. Cleaver J. E., Cortés F., Lutze L. H., Morgan W. F., Player A. N., Mitchell D. L. Unique DNA repair properties of a xeroderma pigmentosum revertant. Mol Cell Biol. 1987 Sep;7(9):3353–3357. doi: 10.1128/mcb.7.9.3353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cleaver J. E. DNA repair with purines and pyrimidines in radiation- and carcinogen-damaged normal and xeroderma pigmentosum human cells. Cancer Res. 1973 Feb;33(2):362–369. [PubMed] [Google Scholar]
  15. Cleaver J. E., Jen J., Charles W. C., Mitchell D. L. Cyclobutane dimers and (6-4) photoproducts in human cells are mended with the same patch sizes. Photochem Photobiol. 1991 Sep;54(3):393–402. doi: 10.1111/j.1751-1097.1991.tb02033.x. [DOI] [PubMed] [Google Scholar]
  16. Driggers W. J., Grishko V. I., LeDoux S. P., Wilson G. L. Defective repair of oxidative damage in the mitochondrial DNA of a xeroderma pigmentosum group A cell line. Cancer Res. 1996 Mar 15;56(6):1262–1266. [PubMed] [Google Scholar]
  17. Eker A. P., Vermeulen W., Miura N., Tanaka K., Jaspers N. G., Hoeijmakers J. H., Bootsma D. Xeroderma pigmentosum group A correcting protein from calf thymus. Mutat Res. 1992 Sep;274(3):211–224. doi: 10.1016/0921-8777(92)90067-d. [DOI] [PubMed] [Google Scholar]
  18. Giannelli F., Croll P. M., Lewin S. A. DNA repair synthesis in human heterokaryons formed by normal and UV-sensitive fibroblasts. Exp Cell Res. 1973 Mar 30;78(1):175–185. doi: 10.1016/0014-4827(73)90052-9. [DOI] [PubMed] [Google Scholar]
  19. Giannelli F., Pawsey S. A. DNA repair synthesis in human heterokaryons. II. A test for heterozygosity in xeroderma pigmentosum and some insight into the structure of the defective enzyme. J Cell Sci. 1974 Jun;15(1):163–176. doi: 10.1242/jcs.15.1.163. [DOI] [PubMed] [Google Scholar]
  20. Gomes X. V., Henricksen L. A., Wold M. S. Proteolytic mapping of human replication protein A: evidence for multiple structural domains and a conformational change upon interaction with single-stranded DNA. Biochemistry. 1996 Apr 30;35(17):5586–5595. doi: 10.1021/bi9526995. [DOI] [PubMed] [Google Scholar]
  21. Greisman H. A., Pabo C. O. A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science. 1997 Jan 31;275(5300):657–661. doi: 10.1126/science.275.5300.657. [DOI] [PubMed] [Google Scholar]
  22. Gunz D., Hess M. T., Naegeli H. Recognition of DNA adducts by human nucleotide excision repair. Evidence for a thermodynamic probing mechanism. J Biol Chem. 1996 Oct 11;271(41):25089–25098. doi: 10.1074/jbc.271.41.25089. [DOI] [PubMed] [Google Scholar]
  23. Guzder S. N., Bailly V., Sung P., Prakash L., Prakash S. Yeast DNA repair protein RAD23 promotes complex formation between transcription factor TFIIH and DNA damage recognition factor RAD14. J Biol Chem. 1995 Apr 14;270(15):8385–8388. doi: 10.1074/jbc.270.15.8385. [DOI] [PubMed] [Google Scholar]
  24. Guzder S. N., Sung P., Prakash L., Prakash S. Yeast DNA-repair gene RAD14 encodes a zinc metalloprotein with affinity for ultraviolet-damaged DNA. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5433–5437. doi: 10.1073/pnas.90.12.5433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hanawalt P. C. Transcription-coupled repair and human disease. Science. 1994 Dec 23;266(5193):1957–1958. doi: 10.1126/science.7801121. [DOI] [PubMed] [Google Scholar]
  26. He Z., Henricksen L. A., Wold M. S., Ingles C. J. RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature. 1995 Apr 6;374(6522):566–569. doi: 10.1038/374566a0. [DOI] [PubMed] [Google Scholar]
  27. Hess M. T., Gunz D., Naegeli H. A repair competition assay to assess recognition by human nucleotide excision repair. Nucleic Acids Res. 1996 Mar 1;24(5):824–828. doi: 10.1093/nar/24.5.824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hoy C. A., Thompson L. H., Mooney C. L., Salazar E. P. Defective DNA cross-link removal in Chinese hamster cell mutants hypersensitive to bifunctional alkylating agents. Cancer Res. 1985 Apr;45(4):1737–1743. [PubMed] [Google Scholar]
  29. Huang J. C., Hsu D. S., Kazantsev A., Sancar A. Substrate spectrum of human excinuclease: repair of abasic sites, methylated bases, mismatches, and bulky adducts. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12213–12217. doi: 10.1073/pnas.91.25.12213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Huang J. C., Svoboda D. L., Reardon J. T., Sancar A. Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5' and the 6th phosphodiester bond 3' to the photodimer. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3664–3668. doi: 10.1073/pnas.89.8.3664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Jeggo P. A., Taccioli G. E., Jackson S. P. Menage à trois: double strand break repair, V(D)J recombination and DNA-PK. Bioessays. 1995 Nov;17(11):949–957. doi: 10.1002/bies.950171108. [DOI] [PubMed] [Google Scholar]
  32. Jiricny J. Mismatch repair and cancer. Cancer Surv. 1996;28:47–68. [PubMed] [Google Scholar]
  33. Jones C. J., Wood R. D. Preferential binding of the xeroderma pigmentosum group A complementing protein to damaged DNA. Biochemistry. 1993 Nov 16;32(45):12096–12104. doi: 10.1021/bi00096a021. [DOI] [PubMed] [Google Scholar]
  34. Kazantsev A., Mu D., Nichols A. F., Zhao X., Linn S., Sancar A. Functional complementation of xeroderma pigmentosum complementation group E by replication protein A in an in vitro system. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5014–5018. doi: 10.1073/pnas.93.10.5014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kenyon G. S., Booth J. B., Prasher D. K., Rudge P. Neuro-otological abnormalities in xeroderma pigmentosum with particular reference to deafness. Brain. 1985 Sep;108(Pt 3):771–784. doi: 10.1093/brain/108.3.771. [DOI] [PubMed] [Google Scholar]
  36. Kirkpatrick D. T., Petes T. D. Repair of DNA loops involves DNA-mismatch and nucleotide-excision repair proteins. Nature. 1997 Jun 26;387(6636):929–931. doi: 10.1038/43225. [DOI] [PubMed] [Google Scholar]
  37. Kolodner R. Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev. 1996 Jun 15;10(12):1433–1442. doi: 10.1101/gad.10.12.1433. [DOI] [PubMed] [Google Scholar]
  38. Kondoh M., Ueda M., Ichihashi M. Correlation of the clinical manifestations and gene mutations of Japanese xeroderma pigmentosum group A patients. Br J Dermatol. 1995 Oct;133(4):579–585. doi: 10.1111/j.1365-2133.1995.tb02709.x. [DOI] [PubMed] [Google Scholar]
  39. Kraemer K. H., Lee M. M., Scotto J. Xeroderma pigmentosum. Cutaneous, ocular, and neurologic abnormalities in 830 published cases. Arch Dermatol. 1987 Feb;123(2):241–250. doi: 10.1001/archderm.123.2.241. [DOI] [PubMed] [Google Scholar]
  40. Kripke M. L. Immunological effects of ultraviolet radiation. J Dermatol. 1991 Aug;18(8):429–433. doi: 10.1111/j.1346-8138.1991.tb03111.x. [DOI] [PubMed] [Google Scholar]
  41. Kuraoka I., Morita E. H., Saijo M., Matsuda T., Morikawa K., Shirakawa M., Tanaka K. Identification of a damaged-DNA binding domain of the XPA protein. Mutat Res. 1996 Jan 2;362(1):87–95. doi: 10.1016/0921-8777(95)00038-0. [DOI] [PubMed] [Google Scholar]
  42. Layher S. K., Cleaver J. E. Quantification of XPA gene expression levels in human and mouse cell lines by competitive RT-PCR. Mutat Res. 1997 Jan 31;383(1):9–19. doi: 10.1016/s0921-8777(96)00040-7. [DOI] [PubMed] [Google Scholar]
  43. Lee S., Cavallo L., Griffith J. Human p53 binds Holliday junctions strongly and facilitates their cleavage. J Biol Chem. 1997 Mar 14;272(11):7532–7539. doi: 10.1074/jbc.272.11.7532. [DOI] [PubMed] [Google Scholar]
  44. Li L., Lu X., Peterson C. A., Legerski R. J. An interaction between the DNA repair factor XPA and replication protein A appears essential for nucleotide excision repair. Mol Cell Biol. 1995 Oct;15(10):5396–5402. doi: 10.1128/mcb.15.10.5396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Li L., Peterson C. A., Lu X., Legerski R. J. Mutations in XPA that prevent association with ERCC1 are defective in nucleotide excision repair. Mol Cell Biol. 1995 Apr;15(4):1993–1998. doi: 10.1128/mcb.15.4.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Lommel L., Hanawalt P. C. Increased UV resistance of a xeroderma pigmentosum revertant cell line is correlated with selective repair of the transcribed strand of an expressed gene. Mol Cell Biol. 1993 Feb;13(2):970–976. doi: 10.1128/mcb.13.2.970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Maher V. M., Dorney D. J., Mendrala A. L., Konze-Thomas B., McCormick J. J. DNA excision-repair processes in human cells can eliminate the cytotoxic and mutagenic consequences of ultraviolet irradiation. Mutat Res. 1979 Sep;62(2):311–323. doi: 10.1016/0027-5107(79)90087-3. [DOI] [PubMed] [Google Scholar]
  48. Masutani C., Sugasawa K., Yanagisawa J., Sonoyama T., Ui M., Enomoto T., Takio K., Tanaka K., van der Spek P. J., Bootsma D. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J. 1994 Apr 15;13(8):1831–1843. doi: 10.1002/j.1460-2075.1994.tb06452.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Matsunaga T., Park C. H., Bessho T., Mu D., Sancar A. Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease. J Biol Chem. 1996 May 10;271(19):11047–11050. doi: 10.1074/jbc.271.19.11047. [DOI] [PubMed] [Google Scholar]
  50. McCready S. The repair of ultraviolet light-induced DNA damage in the halophilic archaebacteria, Halobacterium cutirubrum, Halobacterium halobium and Haloferax volcanii. Mutat Res. 1996 Sep 2;364(1):25–32. doi: 10.1016/0921-8777(96)00018-3. [DOI] [PubMed] [Google Scholar]
  51. McDowell M. L., Nguyen T., Cleaver J. E. A single-site mutation in the XPAC gene alters photoproduct recognition. Mutagenesis. 1993 Mar;8(2):155–161. doi: 10.1093/mutage/8.2.155. [DOI] [PubMed] [Google Scholar]
  52. Mello J. A., Acharya S., Fishel R., Essigmann J. M. The mismatch-repair protein hMSH2 binds selectively to DNA adducts of the anticancer drug cisplatin. Chem Biol. 1996 Jul;3(7):579–589. doi: 10.1016/s1074-5521(96)90149-0. [DOI] [PubMed] [Google Scholar]
  53. Mellon I., Spivak G., Hanawalt P. C. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell. 1987 Oct 23;51(2):241–249. doi: 10.1016/0092-8674(87)90151-6. [DOI] [PubMed] [Google Scholar]
  54. Miyauchi-Hashimoto H., Tanaka K., Horio T. Enhanced inflammation and immunosuppression by ultraviolet radiation in xeroderma pigmentosum group A (XPA) model mice. J Invest Dermatol. 1996 Sep;107(3):343–348. doi: 10.1111/1523-1747.ep12363295. [DOI] [PubMed] [Google Scholar]
  55. Mol C. D., Arvai A. S., Sanderson R. J., Slupphaug G., Kavli B., Krokan H. E., Mosbaugh D. W., Tainer J. A. Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell. 1995 Sep 8;82(5):701–708. doi: 10.1016/0092-8674(95)90467-0. [DOI] [PubMed] [Google Scholar]
  56. Mol C. D., Arvai A. S., Slupphaug G., Kavli B., Alseth I., Krokan H. E., Tainer J. A. Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis. Cell. 1995 Mar 24;80(6):869–878. doi: 10.1016/0092-8674(95)90290-2. [DOI] [PubMed] [Google Scholar]
  57. Mu D., Tursun M., Duckett D. R., Drummond J. T., Modrich P., Sancar A. Recognition and repair of compound DNA lesions (base damage and mismatch) by human mismatch repair and excision repair systems. Mol Cell Biol. 1997 Feb;17(2):760–769. doi: 10.1128/mcb.17.2.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Nagai A., Saijo M., Kuraoka I., Matsuda T., Kodo N., Nakatsu Y., Mimaki T., Mino M., Biggerstaff M., Wood R. D. Enhancement of damage-specific DNA binding of XPA by interaction with the ERCC1 DNA repair protein. Biochem Biophys Res Commun. 1995 Jun 26;211(3):960–966. doi: 10.1006/bbrc.1995.1905. [DOI] [PubMed] [Google Scholar]
  59. Nakane H., Takeuchi S., Yuba S., Saijo M., Nakatsu Y., Murai H., Nakatsuru Y., Ishikawa T., Hirota S., Kitamura Y. High incidence of ultraviolet-B-or chemical-carcinogen-induced skin tumours in mice lacking the xeroderma pigmentosum group A gene. Nature. 1995 Sep 14;377(6545):165–168. doi: 10.1038/377165a0. [DOI] [PubMed] [Google Scholar]
  60. Nichols A. F., Ong P., Linn S. Mutations specific to the xeroderma pigmentosum group E Ddb- phenotype. J Biol Chem. 1996 Oct 4;271(40):24317–24320. doi: 10.1074/jbc.271.40.24317. [DOI] [PubMed] [Google Scholar]
  61. Nishigori C., Zghal M., Yagi T., Imamura S., Komoun M. R., Takebe H. High prevalence of the point mutation in exon 6 of the xeroderma pigmentosum group A-complementing (XPAC) gene in xeroderma pigmentosum group A patients in Tunisia. Am J Hum Genet. 1993 Nov;53(5):1001–1006. [PMC free article] [PubMed] [Google Scholar]
  62. O'Donovan A., Davies A. A., Moggs J. G., West S. C., Wood R. D. XPG endonuclease makes the 3' incision in human DNA nucleotide excision repair. Nature. 1994 Sep 29;371(6496):432–435. doi: 10.1038/371432a0. [DOI] [PubMed] [Google Scholar]
  63. Omichinski J. G., Clore G. M., Schaad O., Felsenfeld G., Trainor C., Appella E., Stahl S. J., Gronenborn A. M. NMR structure of a specific DNA complex of Zn-containing DNA binding domain of GATA-1. Science. 1993 Jul 23;261(5120):438–446. doi: 10.1126/science.8332909. [DOI] [PubMed] [Google Scholar]
  64. Park H. W., Kim S. T., Sancar A., Deisenhofer J. Crystal structure of DNA photolyase from Escherichia coli. Science. 1995 Jun 30;268(5219):1866–1872. doi: 10.1126/science.7604260. [DOI] [PubMed] [Google Scholar]
  65. Raha M., Wang G., Seidman M. M., Glazer P. M. Mutagenesis by third-strand-directed psoralen adducts in repair-deficient human cells: high frequency and altered spectrum in a xeroderma pigmentosum variant. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2941–2946. doi: 10.1073/pnas.93.7.2941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Reardon J. T., Mu D., Sancar A. Overproduction, purification, and characterization of the XPC subunit of the human DNA repair excision nuclease. J Biol Chem. 1996 Aug 9;271(32):19451–19456. doi: 10.1074/jbc.271.32.19451. [DOI] [PubMed] [Google Scholar]
  67. Reardon J. T., Nichols A. F., Keeney S., Smith C. A., Taylor J. S., Linn S., Sancar A. Comparative analysis of binding of human damaged DNA-binding protein (XPE) and Escherichia coli damage recognition protein (UvrA) to the major ultraviolet photoproducts: T[c,s]T, T[t,s]T, T[6-4]T, and T[Dewar]T. J Biol Chem. 1993 Oct 5;268(28):21301–21308. [PubMed] [Google Scholar]
  68. Reardon J. T., Thompson L. H., Sancar A. Excision repair in man and the molecular basis of xeroderma pigmentosum syndrome. Cold Spring Harb Symp Quant Biol. 1993;58:605–617. doi: 10.1101/sqb.1993.058.01.067. [DOI] [PubMed] [Google Scholar]
  69. Robbins J. H., Brumback R. A., Mendiones M., Barrett S. F., Carl J. R., Cho S., Denckla M. B., Ganges M. B., Gerber L. H., Guthrie R. A. Neurological disease in xeroderma pigmentosum. Documentation of a late onset type of the juvenile onset form. Brain. 1991 Jun;114(Pt 3):1335–1361. doi: 10.1093/brain/114.3.1335. [DOI] [PubMed] [Google Scholar]
  70. Robbins J. H., Kraemer K. H., Lutzner M. A., Festoff B. W., Coon H. G. Xeroderma pigmentosum. An inherited diseases with sun sensitivity, multiple cutaneous neoplasms, and abnormal DNA repair. Ann Intern Med. 1974 Feb;80(2):221–248. doi: 10.7326/0003-4819-80-2-221. [DOI] [PubMed] [Google Scholar]
  71. Révet B. M., Sena E. P., Zarling D. A. Homologous DNA targeting with RecA protein-coated short DNA probes and electron microscope mapping on linear duplex molecules. J Mol Biol. 1993 Aug 5;232(3):779–791. doi: 10.1006/jmbi.1993.1431. [DOI] [PubMed] [Google Scholar]
  72. Saijo M., Kuraoka I., Masutani C., Hanaoka F., Tanaka K. Sequential binding of DNA repair proteins RPA and ERCC1 to XPA in vitro. Nucleic Acids Res. 1996 Dec 1;24(23):4719–4724. doi: 10.1093/nar/24.23.4719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Sancar A. DNA excision repair. Annu Rev Biochem. 1996;65:43–81. doi: 10.1146/annurev.bi.65.070196.000355. [DOI] [PubMed] [Google Scholar]
  74. Sancar A., Hearst J. E. Molecular matchmakers. Science. 1993 Mar 5;259(5100):1415–1420. doi: 10.1126/science.8451638. [DOI] [PubMed] [Google Scholar]
  75. Sancar A., Sancar G. B. DNA repair enzymes. Annu Rev Biochem. 1988;57:29–67. doi: 10.1146/annurev.bi.57.070188.000333. [DOI] [PubMed] [Google Scholar]
  76. Sands A. T., Abuin A., Sanchez A., Conti C. J., Bradley A. High susceptibility to ultraviolet-induced carcinogenesis in mice lacking XPC. Nature. 1995 Sep 14;377(6545):162–165. doi: 10.1038/377162a0. [DOI] [PubMed] [Google Scholar]
  77. Sato M., Nishigori C., Yagi T., Takebe H. Aberrant splicing and truncated-protein expression due to a newly identified XPA gene mutation. Mutat Res. 1996 Feb 15;362(2):199–208. doi: 10.1016/0921-8777(95)00052-6. [DOI] [PubMed] [Google Scholar]
  78. Satokata I., Iwai K., Matsuda T., Okada Y., Tanaka K. Genomic characterization of the human DNA excision repair-controlling gene XPAC. Gene. 1993 Dec 22;136(1-2):345–348. doi: 10.1016/0378-1119(93)90493-m. [DOI] [PubMed] [Google Scholar]
  79. Satokata I., Tanaka K., Miura N., Miyamoto I., Satoh Y., Kondo S., Okada Y. Characterization of a splicing mutation in group A xeroderma pigmentosum. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9908–9912. doi: 10.1073/pnas.87.24.9908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Satokata I., Tanaka K., Miura N., Narita M., Mimaki T., Satoh Y., Kondo S., Okada Y. Three nonsense mutations responsible for group A xeroderma pigmentosum. Mutat Res. 1992 Mar;273(2):193–202. doi: 10.1016/0921-8777(92)90080-m. [DOI] [PubMed] [Google Scholar]
  81. Satokata I., Tanaka K., Okada Y. Molecular basis of group A xeroderma pigmentosum: a missense mutation and two deletions located in a zinc finger consensus sequence of the XPAC gene. Hum Genet. 1992 Mar;88(6):603–607. doi: 10.1007/BF02265282. [DOI] [PubMed] [Google Scholar]
  82. Satokata I., Tanaka K., Yuba S., Okada Y. Identification of splicing mutations of the last nucleotides of exons, a nonsense mutation, and a missense mutation of the XPAC gene as causes of group A xeroderma pigmentosum. Mutat Res. 1992 Mar;273(2):203–212. doi: 10.1016/0921-8777(92)90081-d. [DOI] [PubMed] [Google Scholar]
  83. Satokata I., Uchiyama M., Tanaka K. Two novel splicing mutations in the XPA gene in patients with group A xeroderma pigmentosum. Hum Mol Genet. 1995 Oct;4(10):1993–1994. doi: 10.1093/hmg/4.10.1993. [DOI] [PubMed] [Google Scholar]
  84. Savva R., McAuley-Hecht K., Brown T., Pearl L. The structural basis of specific base-excision repair by uracil-DNA glycosylase. Nature. 1995 Feb 9;373(6514):487–493. doi: 10.1038/373487a0. [DOI] [PubMed] [Google Scholar]
  85. Shimamoto T., Kohno K., Tanaka K., Okada Y. Molecular cloning of human XPAC gene homologs from chicken, Xenopus laevis and Drosophila melanogaster. Biochem Biophys Res Commun. 1991 Dec 31;181(3):1231–1237. doi: 10.1016/0006-291x(91)92070-z. [DOI] [PubMed] [Google Scholar]
  86. Singer B., Hang B. What structural features determine repair enzyme specificity and mechanism in chemically modified DNA? Chem Res Toxicol. 1997 Jul;10(7):713–732. doi: 10.1021/tx970011e. [DOI] [PubMed] [Google Scholar]
  87. States J. C., Myrand S. P. Splice site mutations in a xeroderma pigmentosum group A patient with delayed onset of neurological disease. Mutat Res. 1996 Aug 8;363(3):171–177. doi: 10.1016/0921-8777(96)00004-3. [DOI] [PubMed] [Google Scholar]
  88. Takao M., Yonemasu R., Yamamoto K., Yasui A. Characterization of a UV endonuclease gene from the fission yeast Schizosaccharomyces pombe and its bacterial homolog. Nucleic Acids Res. 1996 Apr 1;24(7):1267–1271. doi: 10.1093/nar/24.7.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Tanaka K., Satokata I., Ogita Z., Uchida T., Okada Y. Molecular cloning of a mouse DNA repair gene that complements the defect of group-A xeroderma pigmentosum. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5512–5516. doi: 10.1073/pnas.86.14.5512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Thomm M. Archaeal transcription factors and their role in transcription initiation. FEMS Microbiol Rev. 1996 May;18(2-3):159–171. doi: 10.1111/j.1574-6976.1996.tb00234.x. [DOI] [PubMed] [Google Scholar]
  91. Thompson L. H. Evidence that mammalian cells possess homologous recombinational repair pathways. Mutat Res. 1996 Jun 12;363(2):77–88. doi: 10.1016/0921-8777(96)00008-0. [DOI] [PubMed] [Google Scholar]
  92. Topping R. S., Myrand S. P., Williams B. L., Albert J. C., States J. C. Characterization of the human XPA promoter. Gene. 1995 Dec 12;166(2):341–342. doi: 10.1016/0378-1119(95)00649-4. [DOI] [PubMed] [Google Scholar]
  93. Vuksanovic L., Cleaver J. E. Unique cross-link and monoadduct repair characteristics of a xeroderma pigmentosum revertant cell line. Mutat Res. 1987 Nov;184(3):255–263. doi: 10.1016/0167-8817(87)90024-1. [DOI] [PubMed] [Google Scholar]
  94. Wang G., Seidman M. M., Glazer P. M. Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair. Science. 1996 Feb 9;271(5250):802–805. doi: 10.1126/science.271.5250.802. [DOI] [PubMed] [Google Scholar]
  95. Weeda G., Ma L., van Ham R. C., Bootsma D., van der Eb A. J., Hoeijmakers J. H. Characterization of the mouse homolog of the XPBC/ERCC-3 gene implicated in xeroderma pigmentosum and Cockayne's syndrome. Carcinogenesis. 1991 Dec;12(12):2361–2368. doi: 10.1093/carcin/12.12.2361. [DOI] [PubMed] [Google Scholar]
  96. Wolfe S. A., Zhou P., Dötsch V., Chen L., You A., Ho S. N., Crabtree G. R., Wagner G., Verdine G. L. Unusual Rel-like architecture in the DNA-binding domain of the transcription factor NFATc. Nature. 1997 Jan 9;385(6612):172–176. doi: 10.1038/385172a0. [DOI] [PubMed] [Google Scholar]
  97. Wood R. D. DNA repair in eukaryotes. Annu Rev Biochem. 1996;65:135–167. doi: 10.1146/annurev.bi.65.070196.001031. [DOI] [PubMed] [Google Scholar]
  98. Yajima H., Takao M., Yasuhira S., Zhao J. H., Ishii C., Inoue H., Yasui A. A eukaryotic gene encoding an endonuclease that specifically repairs DNA damaged by ultraviolet light. EMBO J. 1995 May 15;14(10):2393–2399. doi: 10.1002/j.1460-2075.1995.tb07234.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. de Vries A., van Oostrom C. T., Hofhuis F. M., Dortant P. M., Berg R. J., de Gruijl F. R., Wester P. W., van Kreijl C. F., Capel P. J., van Steeg H. Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature. 1995 Sep 14;377(6545):169–173. doi: 10.1038/377169a0. [DOI] [PubMed] [Google Scholar]
  100. van Duin M., van den Tol J., Warmerdam P., Odijk H., Meijer D., Westerveld A., Bootsma D., Hoeijmakers J. H. Evolution and mutagenesis of the mammalian excision repair gene ERCC-1. Nucleic Acids Res. 1988 Jun 24;16(12):5305–5322. doi: 10.1093/nar/16.12.5305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. van Oostrom C. T., de Vries A., Verbeek S. J., van Kreijl C. F., van Steeg H. Cloning and characterization of the mouse XPAC gene. Nucleic Acids Res. 1994 Jan 11;22(1):11–14. doi: 10.1093/nar/22.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. van Vuuren A. J., Appeldoorn E., Odijk H., Yasui A., Jaspers N. G., Bootsma D., Hoeijmakers J. H. Evidence for a repair enzyme complex involving ERCC1 and complementing activities of ERCC4, ERCC11 and xeroderma pigmentosum group F. EMBO J. 1993 Sep;12(9):3693–3701. doi: 10.1002/j.1460-2075.1993.tb06044.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES