Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Nov 15;328(Pt 1):83–91. doi: 10.1042/bj3280083

Kinetic mechanism of the glycogen-phosphorylase-catalysed reaction in the direction of glycogen synthesis: co-operative interactions of AMP and glucose 1-phosphate during catalysis.

E A Sergienko 1, D K Srivastava 1
PMCID: PMC1218890  PMID: 9359837

Abstract

We employed our newly developed, continuous, spectrophotometric method [Sergienko and Srivastava (1994) Anal. Biochem. 221, 348-355] for measuring the glycogen-phosphorylase-catalysed reaction in the direction of glycogen synthesis, utilizing varied concentrations of AMP (2-400 microM) and glucose 1-phosphate (G1P; 4 microM to 41 mM). The experimental data revealed that the enzyme catalysis exhibits sigmoidal dependence on both AMP and G1P concentrations, with Hill coefficient and EC50 values (mutually) affected by the concentrations of the above substrates. A detailed kinetic analysis of the substrate-dependent activation, as well as glucose-inhibition data, lead us to propose the following mechanistic features of the glycogen-phosphorylase-catalysed reaction. (1) The enzyme exhibits catalytic activity when two molecules of AMP and two molecules of G1P are bound to the dimeric unit. (2) The binding of one molecule of glucose (the competitive inhibitor of G1P) per dimeric unit results into a complete loss of the enzyme activity. (3) There is no restriction of binding of AMP or G1P when one of the dimeric subunits is already bound with the other ligand. For example, one or two G1P molecules can bind to the enzyme dimer when zero, one or two molecules of AMP are already bound. The magnitudes of rate and equilibrium constants for the glycogen-phosphorylase-catalysed reaction, derived from analyses of the experimental data in the light of a few selected minimal models, are presented.

Full Text

The Full Text of this article is available as a PDF (686.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bardsley W. G., Childs R. E. Sigmoid curves, non-linear double-reciprocal plots and allosterism. Biochem J. 1975 Aug;149(2):313–328. doi: 10.1042/bj1490313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Bresler S., Firsov L. Allosteric interactions in phosphorylase B. Biopolymers. 1971;10(7):1187–1205. doi: 10.1002/bip.360100709. [DOI] [PubMed] [Google Scholar]
  4. Busby S. J., Radda G. K. Regulation of the glycogen phosphorylase system--from physical measurements to biological speculations. Curr Top Cell Regul. 1976;10:89–160. doi: 10.1016/b978-0-12-152810-2.50010-3. [DOI] [PubMed] [Google Scholar]
  5. Childress C. C., Sacktor B. Regulation of glycogen metabolism in insect flight muscle. Purification and properties of phosphorylases in vitro and in vivo. J Biol Chem. 1970 Jun 10;245(11):2927–2936. [PubMed] [Google Scholar]
  6. Cohen P., Duewer T., Fischer E. H. Phosphorylase from dogfish skeletal muscle. Purification and a comparison of its physical properties to those of rabbit muscle phosphorylase. Biochemistry. 1971 Jul 6;10(14):2683–2694. doi: 10.1021/bi00790a005. [DOI] [PubMed] [Google Scholar]
  7. Engers H. D., Shechosky S., Madsen N. B. Kinetic mechanism of phosphorylase a. I. Initial velocity studies. Can J Biochem. 1970 Jul;48(7):746–754. doi: 10.1139/o70-117. [DOI] [PubMed] [Google Scholar]
  8. HELMREICH E., CORI C. F. THE ROLE OF ADENYLIC ACID IN THE ACTIVATION OF PHOSPHORYLASE. Proc Natl Acad Sci U S A. 1964 Jan;51:131–138. doi: 10.1073/pnas.51.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hedrick J. L., Fischer E. H. On the role of pyridoxal 5'-phosphate in phosphorylase. I. Absence of classical vitamin B6--dependent enzymatic activities in muscle glycogen phosphorylase. Biochemistry. 1965 Jul;4(7):1337–1343. doi: 10.1021/bi00883a018. [DOI] [PubMed] [Google Scholar]
  10. Helmreich E., Michaelides M. C., Cori C. F. Effects of substrates and a substrate analog on the binding of 5'-adenylic acid to muscle phosphorylase a. Biochemistry. 1967 Dec;6(12):3695–3710. doi: 10.1021/bi00864a012. [DOI] [PubMed] [Google Scholar]
  11. Kastenschmidt L. L., Kastenschmidt J., Helmreich E. The effect of temperature on the allosteric transitions of rabbit skeletal muscle phosphorylase b. Biochemistry. 1968 Dec;7(12):4543–4556. doi: 10.1021/bi00852a051. [DOI] [PubMed] [Google Scholar]
  12. Kasvinsky P. J., Shechosky S., Fletterick R. J. Synergistic regulation of phosphorylase a by glucose and caffeine. J Biol Chem. 1978 Dec 25;253(24):9102–9106. [PubMed] [Google Scholar]
  13. Klinov S. V., Kurganov B. I. Kinetic mechanism of activation of muscle glycogen phosphorylase b by adenosine 5'-monophosphate. Arch Biochem Biophys. 1994 Jul;312(1):14–21. doi: 10.1006/abbi.1994.1274. [DOI] [PubMed] [Google Scholar]
  14. Lowry O. H., Schulz D. W., Passonneau J. V. The kinetics of glycogen phosphorylases from brain and muscle. J Biol Chem. 1967 Jan 25;242(2):271–280. [PubMed] [Google Scholar]
  15. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  16. Madsen N. B., Shechosky S. Allosteric properties of phosphorylase b. II. Comparison with a kinetic model. J Biol Chem. 1967 Jul 25;242(14):3301–3307. [PubMed] [Google Scholar]
  17. Martin J. L., Johnson L. N., Withers S. G. Comparison of the binding of glucose and glucose 1-phosphate derivatives to T-state glycogen phosphorylase b. Biochemistry. 1990 Dec 4;29(48):10745–10757. doi: 10.1021/bi00500a005. [DOI] [PubMed] [Google Scholar]
  18. Reich J. G., Wangermann G., Falck M., Rohde K. A general strategy for parameter estimation from isosteric and allosteric-kinetic data and binding measurements. Eur J Biochem. 1972 Apr 11;26(3):368–379. doi: 10.1111/j.1432-1033.1972.tb01776.x. [DOI] [PubMed] [Google Scholar]
  19. Sergienko E. A., Srivastava D. K. A continuous spectrophotometric method for the determination of glycogen phosphorylase-catalyzed reaction in the direction of glycogen synthesis. Anal Biochem. 1994 Sep;221(2):348–355. doi: 10.1006/abio.1994.1424. [DOI] [PubMed] [Google Scholar]
  20. Sprang S., Fletterick R. J. The structure of glycogen phosphorylase alpha at 2.5 A resolution. J Mol Biol. 1979 Jul 5;131(3):523–551. doi: 10.1016/0022-2836(79)90006-8. [DOI] [PubMed] [Google Scholar]
  21. Wang Z. X., Killilea S. D., Srivastava D. K. Kinetic evaluation of substrate-dependent origin of the lag phase in soybean lipoxygenase-1 catalyzed reactions. Biochemistry. 1993 Feb 16;32(6):1500–1509. doi: 10.1021/bi00057a014. [DOI] [PubMed] [Google Scholar]
  22. Wang Z. X., Srivastava D. K. A graphical method for determining the number of essential sites in enzymes with multiple binding sites for a ligand. Anal Biochem. 1994 Jan;216(1):15–26. doi: 10.1006/abio.1994.1002. [DOI] [PubMed] [Google Scholar]
  23. Webb M. R. A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4884–4887. doi: 10.1073/pnas.89.11.4884. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES