Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Nov 15;328(Pt 1):121–129. doi: 10.1042/bj3280121

Expression and processing of vertebrate acetylcholinesterase in the yeast Pichia pastoris.

N Morel 1, J Massoulié 1
PMCID: PMC1218895  PMID: 9359842

Abstract

In the methylotrophic yeast Pichia pastoris, we expressed the rat acetylcholinesterase H and T subunits (AChEH and AChET respectively), as well as truncated subunits from rat (W553stop or AChETDelta, from which most of the T-peptide was removed) and from Bungarus (V536stop, or AChENAT, or AChEDelta, reduced to the catalytic domain). We show that AChEH and AChET subunits are processed into the same molecular forms as in vivo or in transfected mammalian cells, but that lytic processes converting amphiphilic forms into non-amphiphilic derivatives appear to be more active in yeast. The production of glycophosphatidylinositol (GPI)-anchored molecules (dimers, with a small proportion of monomers) demonstrates that P. pastoris can correctly process a mammalian C-terminal GPI-addition signal. Truncated rat and Bungarus AChE molecules, which exclusively generated non-amphiphilic monomers, were released more efficiently and thus produced more AChE activity. In the hope of increasing the production of AChE, we replaced the endogenous signal peptide by yeast prepeptides, with or without a propeptide. We found that the presence of a propeptide, which does not exist in AChE, does not prevent the proper folding of the enzyme, and that it may either increase or decrease the yield of secreted AChE, depending on the signal peptide. Surprisingly, the highest yield was obtained with the endogenous signal peptide. For all combinations, the yield was 2-3 times higher for Bungarus than for rat AChE, probably reflecting differences in the folding efficiency or stability of the polypeptides. The Michaelis constant (Km), the constant of inhibition by excess substrate (Kss) and the catalytic constant (kcat) values of the recombinant AChEs obtained both in P. pastoris and in COS cells, were essentially identical with those of the corresponding natural enzymes, and the Ki values of active-site and peripheral-site inhibitors (edrophonium, decamethonium, propidium) were similar.

Full Text

The Full Text of this article is available as a PDF (503.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brierley R. A., Bussineau C., Kosson R., Melton A., Siegel R. S. Fermentation development of recombinant Pichia pastoris expressing the heterologous gene: bovine lysozyme. Ann N Y Acad Sci. 1990;589:350–362. doi: 10.1111/j.1749-6632.1990.tb24257.x. [DOI] [PubMed] [Google Scholar]
  2. Cousin X., Bon S., Duval N., Massoulié J., Bon C. Cloning and expression of acetylcholinesterase from Bungarus fasciatus venom. A new type of cooh-terminal domain; involvement of a positively charged residue in the peripheral site. J Biol Chem. 1996 Jun 21;271(25):15099–15108. doi: 10.1074/jbc.271.25.15099. [DOI] [PubMed] [Google Scholar]
  3. Coussen F., Bonnerot C., Massoulié J. Stable expression of acetylcholinesterase and associated collagenic subunits in transfected RBL cell lines: production of GPI-anchored dimers and collagen-tailed forms. Eur J Cell Biol. 1995 Jul;67(3):254–260. [PubMed] [Google Scholar]
  4. Duval N., Massoulié J., Bon S. H and T subunits of acetylcholinesterase from Torpedo, expressed in COS cells, generate all types of globular forms. J Cell Biol. 1992 Aug;118(3):641–653. doi: 10.1083/jcb.118.3.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  6. Faerman C., Ripoll D., Bon S., Le Feuvre Y., Morel N., Massoulié J., Sussman J. L., Silman I. Site-directed mutants designed to test back-door hypotheses of acetylcholinesterase function. FEBS Lett. 1996 May 13;386(1):65–71. doi: 10.1016/0014-5793(96)00374-2. [DOI] [PubMed] [Google Scholar]
  7. Fischer M., Ittah A., Liefer I., Gorecki M. Expression and reconstitution of biologically active human acetylcholinesterase from Escherichia coli. Cell Mol Neurobiol. 1993 Feb;13(1):25–38. doi: 10.1007/BF00712987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frobert Y., Créminon C., Cousin X., Rémy M. H., Chatel J. M., Bon S., Bon C., Grassi J. Acetylcholinesterases from Elapidae snake venoms: biochemical, immunological and enzymatic characterization. Biochim Biophys Acta. 1997 May 23;1339(2):253–267. doi: 10.1016/s0167-4838(97)00009-5. [DOI] [PubMed] [Google Scholar]
  9. Gibney G., Taylor P. Biosynthesis of Torpedo acetylcholinesterase in mammalian cells. Functional expression and mutagenesis of the glycophospholipid-anchored form. J Biol Chem. 1990 Jul 25;265(21):12576–12583. [PubMed] [Google Scholar]
  10. Gilson M. K., Straatsma T. P., McCammon J. A., Ripoll D. R., Faerman C. H., Axelsen P. H., Silman I., Sussman J. L. Open "back door" in a molecular dynamics simulation of acetylcholinesterase. Science. 1994 Mar 4;263(5151):1276–1278. doi: 10.1126/science.8122110. [DOI] [PubMed] [Google Scholar]
  11. Kronman C., Ordentlich A., Barak D., Velan B., Shafferman A. The "back door" hypothesis for product clearance in acetylcholinesterase challenged by site-directed mutagenesis. J Biol Chem. 1994 Nov 11;269(45):27819–27822. [PubMed] [Google Scholar]
  12. Kronman C., Velan B., Gozes Y., Leitner M., Flashner Y., Lazar A., Marcus D., Sery T., Papier Y., Grosfeld H. Production and secretion of high levels of recombinant human acetylcholinesterase in cultured cell lines: microheterogeneity of the catalytic subunit. Gene. 1992 Nov 16;121(2):295–304. doi: 10.1016/0378-1119(92)90134-b. [DOI] [PubMed] [Google Scholar]
  13. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  14. Laroche Y., Storme V., De Meutter J., Messens J., Lauwereys M. High-level secretion and very efficient isotopic labeling of tick anticoagulant peptide (TAP) expressed in the methylotrophic yeast, Pichia pastoris. Biotechnology (N Y) 1994 Nov;12(11):1119–1124. doi: 10.1038/nbt1194-1119. [DOI] [PubMed] [Google Scholar]
  15. Legay C., Bon S., Massoulié J. Expression of a cDNA encoding the glycolipid-anchored form of rat acetylcholinesterase. FEBS Lett. 1993 Jan 4;315(2):163–166. doi: 10.1016/0014-5793(93)81155-s. [DOI] [PubMed] [Google Scholar]
  16. Legay C., Bon S., Vernier P., Coussen F., Massoulié J. Cloning and expression of a rat acetylcholinesterase subunit: generation of multiple molecular forms and complementarity with a Torpedo collagenic subunit. J Neurochem. 1993 Jan;60(1):337–346. doi: 10.1111/j.1471-4159.1993.tb05856.x. [DOI] [PubMed] [Google Scholar]
  17. Massoulié J., Sussman J., Bon S., Silman I. Structure and functions of acetylcholinesterase and butyrylcholinesterase. Prog Brain Res. 1993;98:139–146. doi: 10.1016/s0079-6123(08)62391-2. [DOI] [PubMed] [Google Scholar]
  18. Méflah K., Bernard S., Massoulié J. Interactions with lectins indicate differences in the carbohydrate composition of the membrane-bound enzymes acetylcholinesterase and 5'-nucleotidase in different cell types. Biochimie. 1984 Jan;66(1):59–69. doi: 10.1016/0300-9084(84)90192-5. [DOI] [PubMed] [Google Scholar]
  19. Paifer E., Margolles E., Cremata J., Montesino R., Herrera L., Delgado J. M. Efficient expression and secretion of recombinant alpha amylase in Pichia pastoris using two different signal sequences. Yeast. 1994 Nov;10(11):1415–1419. doi: 10.1002/yea.320101104. [DOI] [PubMed] [Google Scholar]
  20. Radić Z., Gibney G., Kawamoto S., MacPhee-Quigley K., Bongiorno C., Taylor P. Expression of recombinant acetylcholinesterase in a baculovirus system: kinetic properties of glutamate 199 mutants. Biochemistry. 1992 Oct 13;31(40):9760–9767. doi: 10.1021/bi00155a032. [DOI] [PubMed] [Google Scholar]
  21. Shafferman A., Kronman C., Flashner Y., Leitner M., Grosfeld H., Ordentlich A., Gozes Y., Cohen S., Ariel N., Barak D. Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding. J Biol Chem. 1992 Sep 5;267(25):17640–17648. [PubMed] [Google Scholar]
  22. Shafferman A., Velan B., Ordentlich A., Kronman C., Grosfeld H., Leitner M., Flashner Y., Cohen S., Barak D., Ariel N. Substrate inhibition of acetylcholinesterase: residues affecting signal transduction from the surface to the catalytic center. EMBO J. 1992 Oct;11(10):3561–3568. doi: 10.1002/j.1460-2075.1992.tb05439.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991 Aug 23;253(5022):872–879. doi: 10.1126/science.1678899. [DOI] [PubMed] [Google Scholar]
  24. Tu A. T., Toom P. M. Isolation and characterization of the toxic component of Enhydrina schistosa (common sea snake) venom. J Biol Chem. 1971 Feb 25;246(4):1012–1016. [PubMed] [Google Scholar]
  25. Vigny M., Bon S., Massoulié J., Leterrier F. Active-site catalytic efficiency of acetylcholinesterase molecular forms in Electrophorus, torpedo, rat and chicken. Eur J Biochem. 1978 Apr 17;85(2):317–323. doi: 10.1111/j.1432-1033.1978.tb12241.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES