Abstract
The gene (alk G) encoding the two-iron rubredoxin of Pseudomonas oleovorans was amplified from genomic DNA by PCR and subcloned into the expression vector pKK223-3. The vector directed the high-level production of rubredoxin in Escherichia coli. A simple three-step procedure was used to purify recombinant rubredoxin in the 1Fe form. 1Fe-rubredoxin was readily converted to the 2Fe, apoprotein and cadmium forms after precipitation with trichloroacetic acid and resolubilization in the presence or absence of ferrous ammonium sulphate or CdCl2 respectively. Recombinant 1Fe and 2Fe rubredoxins are redox-active and able to transfer electrons from reduced spinach ferredoxin reductase to cytochrome c. The absorption spectrum and dichroic features of the CD spectrum for the cadmium-substituted protein are similar to those reported for cadmium-substituted Desulfovibrio gigas rubredoxin [Henehan, Poutney, Zerbe and Vasak (1993) Protein Sci. 2, 1756-1764]. Difference absorption spectroscopy of cadmium-substituted rubredoxin revealed the presence of four Gaussian-resolved maxima at 207, 228, 241 and 280 nm; the 241 nm band is attributable, from Jorgensen's electronegativity theory, to a CysS-CdII charge-transfer excitation. The 113Cd NMR spectrum of the 113Cd-substituted rubredoxin contains two 113Cd resonances with chemical shifts located at 732.3 and 730 p.p.m. The broader linewidth and high frequency shift of the resonance at 730 p. p.m. indicates that the Cd2+ ion is undergoing chemical exchange and, consistent with the difference absorption spectra, is bound less tightly than the Cd2+ ion, giving rise to the chemical shift at 732.3 p.p.m.
Full Text
The Full Text of this article is available as a PDF (416.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adman E. T., Sieker L. C., Jensen L. H. Structure of rubredoxin from Desulfovibrio vulgaris at 1.5 A resolution. J Mol Biol. 1991 Jan 20;217(2):337–352. doi: 10.1016/0022-2836(91)90547-j. [DOI] [PubMed] [Google Scholar]
- Ballongue J., Amine J., Masion E., Petitdemange H., Gay R. Rôle de l'acétate et du butyrate dans l'induction de la NADH: rubrédoxine oxydoréductase chez Clostridium acetobutylicum. Biochimie. 1986 Apr;68(4):575–580. doi: 10.1016/s0300-9084(86)80202-4. [DOI] [PubMed] [Google Scholar]
- Blake P. R., Lee B., Summers M. F., Adams M. W., Park J. B., Zhou Z. H., Bax A. Quantitative measurement of small through-hydrogen-bond and 'through-space' 1H-113Cd and 1H-199Hg J couplings in metal-substituted rubredoxin from Pyrococcus furiosus. J Biomol NMR. 1992 Sep;2(5):527–533. doi: 10.1007/BF02192814. [DOI] [PubMed] [Google Scholar]
- Blake P. R., Park J. B., Zhou Z. H., Hare D. R., Adams M. W., Summers M. F. Solution-state structure by NMR of zinc-substituted rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus. Protein Sci. 1992 Nov;1(11):1508–1521. doi: 10.1002/pro.5560011112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Day M. W., Hsu B. T., Joshua-Tor L., Park J. B., Zhou Z. H., Adams M. W., Rees D. C. X-ray crystal structures of the oxidized and reduced forms of the rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus. Protein Sci. 1992 Nov;1(11):1494–1507. doi: 10.1002/pro.5560011111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eggink G., Engel H., Vriend G., Terpstra P., Witholt B. Rubredoxin reductase of Pseudomonas oleovorans. Structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints. J Mol Biol. 1990 Mar 5;212(1):135–142. doi: 10.1016/0022-2836(90)90310-I. [DOI] [PubMed] [Google Scholar]
- Eggink G., van Lelyveld P. H., Arnberg A., Arfman N., Witteveen C., Witholt B. Structure of the Pseudomonas putida alkBAC operon. Identification of transcription and translation products. J Biol Chem. 1987 May 5;262(13):6400–6406. [PubMed] [Google Scholar]
- Frey M., Sieker L., Payan F., Haser R., Bruschi M., Pepe G., LeGall J. Rubredoxin from Desulfovibrio gigas. A molecular model of the oxidized form at 1.4 A resolution. J Mol Biol. 1987 Oct 5;197(3):525–541. doi: 10.1016/0022-2836(87)90562-6. [DOI] [PubMed] [Google Scholar]
- Gardner K. H., Coleman J. E. 113Cd-1H heteroTOCSY: a method for determining metal-protein connectivities. J Biomol NMR. 1994 Nov;4(6):761–774. doi: 10.1007/BF00398407. [DOI] [PubMed] [Google Scholar]
- Henehan C. J., Pountney D. L., Zerbe O., Vasák M. Identification of cysteine ligands in metalloproteins using optical and NMR spectroscopy: cadmium-substituted rubredoxin as a model [Cd(CysS)4]2- center. Protein Sci. 1993 Oct;2(10):1756–1764. doi: 10.1002/pro.5560021019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krishnamoorthi R., Markley J. L., Cusanovich M. A., Przysiecki C. T. Hydrogen-1 nuclear magnetic resonance investigation of Clostridium pasteurianum rubredoxin: previously unobserved signals. Biochemistry. 1986 Jan 14;25(1):50–54. doi: 10.1021/bi00349a008. [DOI] [PubMed] [Google Scholar]
- Le Gall J. Purification PARTIELLE ET 'ETUDE DE LA NAD: rubrédoxine oxydo-réductase de D. Gigas. Ann Inst Pasteur (Paris) 1968 Jan;114(1):109–115. [PubMed] [Google Scholar]
- Lode E. T., Coon M. J. Enzymatic omega-oxidation. V. Forms of Pseudomonas oleovorans rubredoxin containing one or two iron atoms: structure and function in omega-hydroxylation. J Biol Chem. 1971 Feb 10;246(3):791–802. [PubMed] [Google Scholar]
- Peterson J. A., Basu D., Coon M. J. Enzymatic omega-oxidation. I. Electon carriers in fatty acid and hydrocarbon hydroxylation. J Biol Chem. 1966 Nov 10;241(21):5162–5164. [PubMed] [Google Scholar]
- Pountney D. L., Henehan C. J., Vasák M. Establishing isostructural metal substitution in metalloproteins using 1H NMR, circular dichroism, and Fourier transform infrared spectroscopy. Protein Sci. 1995 Aug;4(8):1571–1576. doi: 10.1002/pro.5560040815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richie K. A., Teng Q., Elkin C. J., Kurtz D. M., Jr 2D 1H and 3D 1H-15N NMR of zinc-rubredoxins: contributions of the beta-sheet to thermostability. Protein Sci. 1996 May;5(5):883–894. doi: 10.1002/pro.5560050510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Coulson A. R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975 May 25;94(3):441–448. doi: 10.1016/0022-2836(75)90213-2. [DOI] [PubMed] [Google Scholar]
- Sieker L. C., Stenkamp R. E., LeGall J. Rubredoxin in crystalline state. Methods Enzymol. 1994;243:203–216. doi: 10.1016/0076-6879(94)43016-0. [DOI] [PubMed] [Google Scholar]
- Stenkamp R. E., Sieker L. C., Jensen L. H. The structure of rubredoxin from Desulfovibrio desulfuricans strain 27774 at 1.5 A resolution. Proteins. 1990;8(4):352–364. doi: 10.1002/prot.340080409. [DOI] [PubMed] [Google Scholar]