Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Nov 15;328(Pt 1):193–197. doi: 10.1042/bj3280193

Identification of essential histidine residues in UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase-T1.

S Wragg 1, F K Hagen 1, L A Tabak 1
PMCID: PMC1218905  PMID: 9359852

Abstract

UDP-N-acetyl-d-galactosamine:polypeptide N-acetylgalactosaminyltransferases (ppGaNTases) catalyse the initial step of mucin-type O-glycosylation. The activity of bovine ppGaNTase-T1 isoenzyme was inhibited by diethyl pyrocarbonate (DEPC) modification. Activity was partially restored by hydroxylamine treatment, indicating that one of the reactive residues was a histidine. The transferase was protected against DEPC inactivation when UDP-GalNAc and EPO-G, a peptide pseudo-substrate PPDAAGAAPLR, were simultaneously present, while presence of EPO-G alone did not alter DEPC inactivation. However, inclusion of UDP-GalNAc alone potentiated DEPC-inhibition of the enzyme, suggesting that UDP-GalNAc binding changes the accessibility or reactivity of an essential histidine residue. Deletion of the first 56 amino acids (including one hisitidine residue) yielded a fully active secreted form of the bovine ppGaNTase-T1 enzyme. Each of the 14 remaining histidines in the enzyme were mutated to alanine, and the recombinant mutants were recovered from COS7 cells. The mutation of histidine residues His211-->Ala and His344-->Ala resulted in recombinant proteins with no detectable enzymic activity. A significant decrease in the initial rate of GalNAc transfer to the substrate was observed with mutants His125-->Ala and His341-->Ala (1% and 6% of wild-type activity respectively). Mutation of the remaining ten histidine residues yielded mutants that were indistinguishable from the wild-type enzyme. Mutagenesis and SDS/PAGE analysis of all N-glycosylation sequons revealed that positions N-95 and N-552 are occupied by N-linked sugars in COS7 cells. Ablation of either site did not perturb enzyme biosynthesis or enzyme activity.

Full Text

The Full Text of this article is available as a PDF (283.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Battaglia E., Pritchard M., Ouzzine M., Fournel-Gigleux S., Radominska A., Siest G., Magdalou J. Chemical modification of human UDP-glucuronosyltransferase UGT1*6 by diethyl pyrocarbonate: possible involvement of a histidine residue in the catalytic process. Arch Biochem Biophys. 1994 Mar;309(2):266–272. doi: 10.1006/abbi.1994.1112. [DOI] [PubMed] [Google Scholar]
  2. Bennett E. P., Hassan H., Clausen H. cDNA cloning and expression of a novel human UDP-N-acetyl-alpha-D-galactosamine. Polypeptide N-acetylgalactosaminyltransferase, GalNAc-t3. J Biol Chem. 1996 Jul 19;271(29):17006–17012. doi: 10.1074/jbc.271.29.17006. [DOI] [PubMed] [Google Scholar]
  3. Burstein Y., Walsh K. A., Neurath H. Evidence of an essential histidine residue in thermolysin. Biochemistry. 1974 Jan 1;13(1):205–210. doi: 10.1021/bi00698a030. [DOI] [PubMed] [Google Scholar]
  4. Chang L. H., Tam M. F. Site-directed mutagenesis and chemical modification of histidine residues on an alpha-class chick liver glutathione S-transferase CL 3-3. Histidines are not needed for the activity of the enzyme and diethylpyrocarbonate modifies both histidine and lysine residues. Eur J Biochem. 1993 Feb 1;211(3):805–811. doi: 10.1111/j.1432-1033.1993.tb17612.x. [DOI] [PubMed] [Google Scholar]
  5. Elhammer A., Kornfeld S. Purification and characterization of UDP-N-acetylgalactosamine: polypeptide N-acetylgalactosaminyltransferase from bovine colostrum and murine lymphoma BW5147 cells. J Biol Chem. 1986 Apr 25;261(12):5249–5255. [PubMed] [Google Scholar]
  6. Fujimoto S., Murakami K., Ohara A. The presence of essential histidine residues in manganese(III)-containing acid phosphatase from sweet potato. J Biochem. 1985 Jun;97(6):1777–1784. doi: 10.1093/oxfordjournals.jbchem.a135236. [DOI] [PubMed] [Google Scholar]
  7. Hagen F. K., Gregoire C. A., Tabak L. A. Cloning and sequence homology of a rat UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. Glycoconj J. 1995 Dec;12(6):901–909. doi: 10.1007/BF00731252. [DOI] [PubMed] [Google Scholar]
  8. Hagen F. K., Van Wuyckhuyse B., Tabak L. A. Purification, cloning, and expression of a bovine UDP-GalNAc: polypeptide N-acetyl-galactosaminyltransferase. J Biol Chem. 1993 Sep 5;268(25):18960–18965. [PubMed] [Google Scholar]
  9. Homa F. L., Hollander T., Lehman D. J., Thomsen D. R., Elhammer A. P. Isolation and expression of a cDNA clone encoding a bovine UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. J Biol Chem. 1993 Jun 15;268(17):12609–12616. [PubMed] [Google Scholar]
  10. Kaufman R. J., Swaroop M., Murtha-Riel P. Depletion of manganese within the secretory pathway inhibits O-linked glycosylation in mammalian cells. Biochemistry. 1994 Aug 23;33(33):9813–9819. doi: 10.1021/bi00199a001. [DOI] [PubMed] [Google Scholar]
  11. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Miles E. W. Modification of histidyl residues in proteins by diethylpyrocarbonate. Methods Enzymol. 1977;47:431–442. doi: 10.1016/0076-6879(77)47043-5. [DOI] [PubMed] [Google Scholar]
  13. O'Connell B. C., Tabak L. A. Separation of glycopeptides from in vitro O-glycosylation reactions using C18 cartridges. Anal Biochem. 1993 May 1;210(2):423–425. doi: 10.1006/abio.1993.1219. [DOI] [PubMed] [Google Scholar]
  14. Paulson J. C., Colley K. J. Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. J Biol Chem. 1989 Oct 25;264(30):17615–17618. [PubMed] [Google Scholar]
  15. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  16. Sugiura M., Kawasaki T., Yamashina I. Purification and characterization of UDP-GalNAc:polypeptide N-acetylgalactosamine transferase from an ascites hepatoma, AH 66. J Biol Chem. 1982 Aug 25;257(16):9501–9507. [PubMed] [Google Scholar]
  17. Wang Y., Abernethy J. L., Eckhardt A. E., Hill R. L. Purification and characterization of a UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase specific for glycosylation of threonine residues. J Biol Chem. 1992 Jun 25;267(18):12709–12716. [PubMed] [Google Scholar]
  18. White T., Bennett E. P., Takio K., Sørensen T., Bonding N., Clausen H. Purification and cDNA cloning of a human UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase. J Biol Chem. 1995 Oct 13;270(41):24156–24165. doi: 10.1074/jbc.270.41.24156. [DOI] [PubMed] [Google Scholar]
  19. Wragg S., Hagen F. K., Tabak L. A. Kinetic analysis of a recombinant UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase. J Biol Chem. 1995 Jul 14;270(28):16947–16954. doi: 10.1074/jbc.270.28.16947. [DOI] [PubMed] [Google Scholar]
  20. Yoshida A., Hara T., Ikenaga H., Takeuchi M. Cloning and expression of a porcine UDP-GalNAc: polypeptide N-acetylgalactosaminyl transferase. Glycoconj J. 1995 Dec;12(6):824–828. doi: 10.1007/BF00731244. [DOI] [PubMed] [Google Scholar]
  21. Zara J., Hagen F. K., Ten Hagen K. G., Van Wuyckhuyse B. C., Tabak L. A. Cloning and expression of mouse UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase-T3. Biochem Biophys Res Commun. 1996 Nov 1;228(1):38–44. doi: 10.1006/bbrc.1996.1613. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES