Abstract
Oxygen radicals are commonly accepted mediators in the tumour necrosis factor-mediated nuclear factor kappa B (NF kappa B) signalling cascade, but evidence for their role during interleukin-1 (IL-1) signalling is lacking. To test the involvement of hydroperoxides we investigated whether IL-1-induced NF kappa B activation could be influenced by glutathione peroxidases (GPx). These enzymes remove hydroperoxides with various specificities for the hydroperoxide substrate. By overexpressing phospholipid hydroperoxide glutathione peroxidase (PHGPx), which characteristically reacts with lipophilic hydroperoxides, the roles of H2O2 and lipid hydroperoxides were assessed. A human umbilical endothelial cell line, ECV 304, was stably transfected with the genes for both PHGPx and selenophosphate synthetase (selD), which provides selenophosphate for selenoprotein biosynthesis. When grown in selenium-deficient culture medium, the double-transfected clone (ECVPHGPx+SelD+) expressed 5-fold higher (P<0.005) PHGPx activity (measured by phosphatidylcholine hydroperoxide removal) than controls. The rate of H2O2 removal was also significantly (P<0.01) higher in this clone. When grown with high levels of extracellular selenium (up to 100 nM selenite), PHGPx activity and H2O2 removal were enhanced substantially in control cells and transfected cells. Under these conditions, PHGPx activity was 1.7-fold (P<0.005) higher in ECVPHGPx+SelD+, but H2O2 removal was the same as in controls. IL-1-induced NF kappa B activation was inhibited by selenium supplementation in control cells. In ECVPHGPx+SelD+ under conditions of selenium restriction, IL-1 induced NF kappa B activation only to a similar extent as under conditions of selenium supplementation in controls, and activation was abolished with 50 nM sodium selenite. These results show that overexpressed PHGPx is sufficient to inhibit NF kappa B activation, and suggests that NF kappa B activation by IL-1 is mediated by a preferential substrate of PHGPx, such as a fatty acid hydroperoxide, rather than by H2O2, the preferred substrate of the more abundant cytosolic GPx.
Full Text
The Full Text of this article is available as a PDF (332.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson M. T., Staal F. J., Gitler C., Herzenberg L. A., Herzenberg L. A. Separation of oxidant-initiated and redox-regulated steps in the NF-kappa B signal transduction pathway. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11527–11531. doi: 10.1073/pnas.91.24.11527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baeuerle P. A., Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol. 1994;12:141–179. doi: 10.1146/annurev.iy.12.040194.001041. [DOI] [PubMed] [Google Scholar]
- Bomalaski J. S., Steiner M. R., Simon P. L., Clark M. A. IL-1 increases phospholipase A2 activity, expression of phospholipase A2-activating protein, and release of linoleic acid from the murine T helper cell line EL-4. J Immunol. 1992 Jan 1;148(1):155–160. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Brigelius-Flohé R., Bilgin B., Eickemeier S., Hipskind R., Singh M., Szamel M., Resch K. The NF kappa B heterodimer/homodimer balance and IL-1-stimulated IL-2 production in murine T lymphocytes. Biofactors. 1995;5(4):169–174. [PubMed] [Google Scholar]
- Brigelius-Flohé R., Friedrichs B., Maurer S., Streicher R. Determinants of PHGPx expression in a cultured endothelial cell line. Biomed Environ Sci. 1997 Sep;10(2-3):163–176. [PubMed] [Google Scholar]
- Brigelius-Flohé R., Lötzer K., Maurer S., Schultz M., Leist M. Utilization of selenium from different chemical entities for selenoprotein biosynthesis by mammalian cell lines. Biofactors. 1995;5(3):125–131. [PubMed] [Google Scholar]
- Camacho M., Godessart N., Antón R., García M., Vila L. Interleukin-1 enhances the ability of cultured human umbilical vein endothelial cells to oxidize linoleic acid. J Biol Chem. 1995 Jul 21;270(29):17279–17286. doi: 10.1074/jbc.270.29.17279. [DOI] [PubMed] [Google Scholar]
- Carman-Krzan M., Wise B. C. Arachidonic acid lipoxygenation may mediate interleukin-1 stimulation of nerve growth factor secretion in astroglial cultures. J Neurosci Res. 1993 Feb 1;34(2):225–232. doi: 10.1002/jnr.490340210. [DOI] [PubMed] [Google Scholar]
- Chae H. Z., Chung S. J., Rhee S. G. Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem. 1994 Nov 4;269(44):27670–27678. [PubMed] [Google Scholar]
- Dornand J., Gerber M. Inhibition of murine T-cell responses by anti-oxidants: the targets of lipo-oxygenase pathway inhibitors. Immunology. 1989 Nov;68(3):384–391. [PMC free article] [PubMed] [Google Scholar]
- Feng L., Xia Y., Garcia G. E., Hwang D., Wilson C. B. Involvement of reactive oxygen intermediates in cyclooxygenase-2 expression induced by interleukin-1, tumor necrosis factor-alpha, and lipopolysaccharide. J Clin Invest. 1995 Apr;95(4):1669–1675. doi: 10.1172/JCI117842. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flohé L., Brigelius-Flohé R., Saliou C., Traber M. G., Packer L. Redox regulation of NF-kappa B activation. Free Radic Biol Med. 1997;22(6):1115–1126. doi: 10.1016/s0891-5849(96)00501-1. [DOI] [PubMed] [Google Scholar]
- Flohé L., Loschen G., Günzler W. A., Eichele E. Glutathione peroxidase, V. The kinetic mechanism. Hoppe Seylers Z Physiol Chem. 1972 Jun;353(6):987–999. doi: 10.1515/bchm2.1972.353.1.987. [DOI] [PubMed] [Google Scholar]
- Fujita T., Takaoka C., Matsui H., Taniguchi T. Structure of the human interleukin 2 gene. Proc Natl Acad Sci U S A. 1983 Dec;80(24):7437–7441. doi: 10.1073/pnas.80.24.7437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galter D., Mihm S., Dröge W. Distinct effects of glutathione disulphide on the nuclear transcription factor kappa B and the activator protein-1. Eur J Biochem. 1994 Apr 15;221(2):639–648. doi: 10.1111/j.1432-1033.1994.tb18776.x. [DOI] [PubMed] [Google Scholar]
- Goossens V., Grooten J., De Vos K., Fiers W. Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8115–8119. doi: 10.1073/pnas.92.18.8115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayashi T., Ueno Y., Okamoto T. Oxidoreductive regulation of nuclear factor kappa B. Involvement of a cellular reducing catalyst thioredoxin. J Biol Chem. 1993 May 25;268(15):11380–11388. [PubMed] [Google Scholar]
- Imai H., Sumi D., Sakamoto H., Hanamoto A., Arai M., Chiba N., Nakagawa Y. Overexpression of phospholipid hydroperoxide glutathione peroxidase suppressed cell death due to oxidative damage in rat basophile leukemia cells (RBL-2H3). Biochem Biophys Res Commun. 1996 May 15;222(2):432–438. doi: 10.1006/bbrc.1996.0762. [DOI] [PubMed] [Google Scholar]
- Imbert V., Rupec R. A., Livolsi A., Pahl H. L., Traenckner E. B., Mueller-Dieckmann C., Farahifar D., Rossi B., Auberger P., Baeuerle P. A. Tyrosine phosphorylation of I kappa B-alpha activates NF-kappa B without proteolytic degradation of I kappa B-alpha. Cell. 1996 Sep 6;86(5):787–798. doi: 10.1016/s0092-8674(00)80153-1. [DOI] [PubMed] [Google Scholar]
- Kelner M. J., Bagnell R. D., Uglik S. F., Montoya M. A., Mullenbach G. T. Heterologous expression of selenium-dependent glutathione peroxidase affords cellular resistance to paraquat. Arch Biochem Biophys. 1995 Oct 20;323(1):40–46. doi: 10.1006/abbi.1995.0007. [DOI] [PubMed] [Google Scholar]
- Kretz-Remy C., Mehlen P., Mirault M. E., Arrigo A. P. Inhibition of I kappa B-alpha phosphorylation and degradation and subsequent NF-kappa B activation by glutathione peroxidase overexpression. J Cell Biol. 1996 Jun;133(5):1083–1093. doi: 10.1083/jcb.133.5.1083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kulmacz R. J., Lands W. E. Requirements for hydroperoxide by the cyclooxygenase and peroxidase activities of prostaglandin H synthase. Prostaglandins. 1983 Apr;25(4):531–540. doi: 10.1016/0090-6980(83)90025-4. [DOI] [PubMed] [Google Scholar]
- Low S. C., Berry M. J. Knowing when not to stop: selenocysteine incorporation in eukaryotes. Trends Biochem Sci. 1996 Jun;21(6):203–208. [PubMed] [Google Scholar]
- Low S. C., Harney J. W., Berry M. J. Cloning and functional characterization of human selenophosphate synthetase, an essential component of selenoprotein synthesis. J Biol Chem. 1995 Sep 15;270(37):21659–21664. doi: 10.1074/jbc.270.37.21659. [DOI] [PubMed] [Google Scholar]
- Maiorino M., Aumann K. D., Brigelius-Flohé R., Doria D., van den Heuvel J., McCarthy J., Roveri A., Ursini F., Flohé L. Probing the presumed catalytic triad of selenium-containing peroxidases by mutational analysis of phospholipid hydroperoxide glutathione peroxidase (PHGPx). Biol Chem Hoppe Seyler. 1995 Nov;376(11):651–660. doi: 10.1515/bchm3.1995.376.11.651. [DOI] [PubMed] [Google Scholar]
- Maiorino M., Gregolin C., Ursini F. Phospholipid hydroperoxide glutathione peroxidase. Methods Enzymol. 1990;186:448–457. doi: 10.1016/0076-6879(90)86139-m. [DOI] [PubMed] [Google Scholar]
- Makropoulos V., Brüning T., Schulze-Osthoff K. Selenium-mediated inhibition of transcription factor NF-kappa B and HIV-1 LTR promoter activity. Arch Toxicol. 1996;70(5):277–283. doi: 10.1007/s002040050274. [DOI] [PubMed] [Google Scholar]
- Marcocci L., Flohé L., Packer L. Evidence for a functional relevance of the selenocysteine residue in mammalian thioredoxin reductase. Biofactors. 1997;6(3):351–358. doi: 10.1002/biof.5520060305. [DOI] [PubMed] [Google Scholar]
- Meier B., Radeke H. H., Selle S., Younes M., Sies H., Resch K., Habermehl G. G. Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-alpha. Biochem J. 1989 Oct 15;263(2):539–545. doi: 10.1042/bj2630539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mirault M. E., Tremblay A., Beaudoin N., Tremblay M. Overexpression of seleno-glutathione peroxidase by gene transfer enhances the resistance of T47D human breast cells to clastogenic oxidants. J Biol Chem. 1991 Nov 5;266(31):20752–20760. [PubMed] [Google Scholar]
- Radeke H. H., Meier B., Topley N., Flöge J., Habermehl G. G., Resch K. Interleukin 1-alpha and tumor necrosis factor-alpha induce oxygen radical production in mesangial cells. Kidney Int. 1990 Feb;37(2):767–775. doi: 10.1038/ki.1990.44. [DOI] [PubMed] [Google Scholar]
- Roveri A., Maiorino M., Ursini F. Enzymatic and immunological measurements of soluble and membrane-bound phospholipid-hydroperoxide glutathione peroxidase. Methods Enzymol. 1994;233:202–212. doi: 10.1016/s0076-6879(94)33023-9. [DOI] [PubMed] [Google Scholar]
- Sappey C., Legrand-Poels S., Best-Belpomme M., Favier A., Rentier B., Piette J. Stimulation of glutathione peroxidase activity decreases HIV type 1 activation after oxidative stress. AIDS Res Hum Retroviruses. 1994 Nov;10(11):1451–1461. doi: 10.1089/aid.1994.10.1451. [DOI] [PubMed] [Google Scholar]
- Schreck R., Rieber P., Baeuerle P. A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 1991 Aug;10(8):2247–2258. doi: 10.1002/j.1460-2075.1991.tb07761.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schreiber E., Matthias P., Müller M. M., Schaffner W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 1989 Aug 11;17(15):6419–6419. doi: 10.1093/nar/17.15.6419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schulze-Osthoff K., Beyaert R., Vandevoorde V., Haegeman G., Fiers W. Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF. EMBO J. 1993 Aug;12(8):3095–3104. doi: 10.1002/j.1460-2075.1993.tb05978.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tamura T., Gladyshev V., Liu S. Y., Stadtman T. C. The mutual sparing effects of selenium and vitamin E in animal nutrition may be further explained by the discovery that mammalian thioredoxin reductase is a selenoenzyme. Biofactors. 1995;5(2):99–102. [PubMed] [Google Scholar]
- Tamura T., Stadtman T. C. A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1006–1011. doi: 10.1073/pnas.93.3.1006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ursini F., Maiorino M., Brigelius-Flohé R., Aumann K. D., Roveri A., Schomburg D., Flohé L. Diversity of glutathione peroxidases. Methods Enzymol. 1995;252:38–53. doi: 10.1016/0076-6879(95)52007-4. [DOI] [PubMed] [Google Scholar]
- Ursini F., Maiorino M., Gregolin C. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim Biophys Acta. 1985 Mar 29;839(1):62–70. doi: 10.1016/0304-4165(85)90182-5. [DOI] [PubMed] [Google Scholar]
- Weitzel F., Wendel A. Selenoenzymes regulate the activity of leukocyte 5-lipoxygenase via the peroxide tone. J Biol Chem. 1993 Mar 25;268(9):6288–6292. [PubMed] [Google Scholar]
- Yagi K., Komura S., Kojima H., Sun Q., Nagata N., Ohishi N., Nishikimi M. Expression of human phospholipid hydroperoxide glutathione peroxidase gene for protection of host cells from lipid hydroperoxide-mediated injury. Biochem Biophys Res Commun. 1996 Feb 15;219(2):486–491. doi: 10.1006/bbrc.1996.0260. [DOI] [PubMed] [Google Scholar]