Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Nov 15;328(Pt 1):271–275. doi: 10.1042/bj3280271

The sphingomyelin-ceramide pathway participates in cytokine regulation of C-reactive protein and serum amyloid A, but not alpha-fibrinogen.

G Lozanski 1, F Berthier 1, I Kushner 1
PMCID: PMC1218917  PMID: 9359864

Abstract

Maximal induction of the acute-phase proteins C-reactive protein (CRP) and serum amyloid A (SAA) in the human hepatoma cell line Hep3B requires the combination of interleukin (IL)-6 and IL-1. In contrast, IL-1 inhibits fibrinogen induction by IL-6. To explore the possible participation of the sphingomyelin-ceramide pathway in the transduction of cytokine effects, the role of this pathway in expression of CRP, SAA and alpha-fibrinogen was investigated. The cell-permeable ceramide analogues C2 and C6 each greatly potentiated induction of both CRP and SAA mRNA by IL-6+IL-1beta but did not affect the responses of alpha-fibrinogen to IL-6 or to IL-6+IL-1beta. The combination of IL-6+IL-1beta led to increased turnover of sphingomyelin in Hep3B cells. D609, an inhibitor of ceramide production by acidic but not neutral sphingomyelinases, substantially inhibited induction of CRP and SAA by IL-6+IL-1beta. The ability of C2 and C6 to potentiate the effects of cytokines suggests that the sphingomyelin-ceramide pathway participates in induction of CRP and SAA by IL-6+IL-1beta under these experimental conditions, most likely by transducing the effects of IL-1beta. C2 and C6 were unable to substitute for IL-1beta in enhancing IL-6 effects on CRP and SAA, consistent with other reports indicating that the sphingomyelin-ceramide pathway is only a single component of multiple necessary converging pathways for induction of many genes. In contrast, this pathway does not appear to participate in mediating the inhibitory effects of IL-1beta on fibrinogen induction by IL-6.

Full Text

The Full Text of this article is available as a PDF (215.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andus T., Geiger T., Hirano T., Kishimoto T., Heinrich P. C. Action of recombinant human interleukin 6, interleukin 1 beta and tumor necrosis factor alpha on the mRNA induction of acute-phase proteins. Eur J Immunol. 1988 May;18(5):739–746. doi: 10.1002/eji.1830180513. [DOI] [PubMed] [Google Scholar]
  2. Ballou L. R., Chao C. P., Holness M. A., Barker S. C., Raghow R. Interleukin-1-mediated PGE2 production and sphingomyelin metabolism. Evidence for the regulation of cyclooxygenase gene expression by sphingosine and ceramide. J Biol Chem. 1992 Oct 5;267(28):20044–20050. [PubMed] [Google Scholar]
  3. Ballou L. R., Laulederkind S. J., Rosloniec E. F., Raghow R. Ceramide signalling and the immune response. Biochim Biophys Acta. 1996 Jun 11;1301(3):273–287. doi: 10.1016/0005-2760(96)00004-5. [DOI] [PubMed] [Google Scholar]
  4. Bankers-Fulbright J. L., Kalli K. R., McKean D. J. Interleukin-1 signal transduction. Life Sci. 1996;59(2):61–83. doi: 10.1016/0024-3205(96)00135-x. [DOI] [PubMed] [Google Scholar]
  5. Betts J. C., Cheshire J. K., Akira S., Kishimoto T., Woo P. The role of NF-kappa B and NF-IL6 transactivating factors in the synergistic activation of human serum amyloid A gene expression by interleukin-1 and interleukin-6. J Biol Chem. 1993 Dec 5;268(34):25624–25631. [PubMed] [Google Scholar]
  6. Boland M. P., Foster S. J., O'Neill L. A. Activation of NF kappa B and potentiation of TNF-induced NF kappa B activation by ceramide analogues in leukemic cell lines despite the absence of an observed sphingomyelinase signalling event. Biochem Soc Trans. 1996 Feb;24(1):1S–1S. doi: 10.1042/bst024001s. [DOI] [PubMed] [Google Scholar]
  7. Castell J. V., Gómez-Lechón M. J., David M., Fabra R., Trullenque R., Heinrich P. C. Acute-phase response of human hepatocytes: regulation of acute-phase protein synthesis by interleukin-6. Hepatology. 1990 Nov;12(5):1179–1186. doi: 10.1002/hep.1840120517. [DOI] [PubMed] [Google Scholar]
  8. Chen J., Nikolova-Karakashian M., Merrill A. H., Jr, Morgan E. T. Regulation of cytochrome P450 2C11 (CYP2C11) gene expression by interleukin-1, sphingomyelin hydrolysis, and ceramides in rat hepatocytes. J Biol Chem. 1995 Oct 20;270(42):25233–25238. doi: 10.1074/jbc.270.42.25233. [DOI] [PubMed] [Google Scholar]
  9. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  10. Dbaibo G. S., Obeid L. M., Hannun Y. A. Tumor necrosis factor-alpha (TNF-alpha) signal transduction through ceramide. Dissociation of growth inhibitory effects of TNF-alpha from activation of nuclear factor-kappa B. J Biol Chem. 1993 Aug 25;268(24):17762–17766. [PubMed] [Google Scholar]
  11. Dinarello C. A. The interleukin-1 family: 10 years of discovery. FASEB J. 1994 Dec;8(15):1314–1325. [PubMed] [Google Scholar]
  12. Drenth J. P., van der Meer J. W., Kushner I. Unstimulated peripheral blood mononuclear cells from patients with the hyper-IgD syndrome produce cytokines capable of potent induction of C-reactive protein and serum amyloid A in Hep3B cells. J Immunol. 1996 Jul 1;157(1):400–404. [PubMed] [Google Scholar]
  13. Fiebich B. L., Lieb K., Berger M., Bauer J. Stimulation of the sphingomyelin pathway induces interleukin-6 gene expression in human astrocytoma cells. J Neuroimmunol. 1995 Dec 31;63(2):207–211. doi: 10.1016/0165-5728(95)00145-x. [DOI] [PubMed] [Google Scholar]
  14. Ganapathi M. K., May L. T., Schultz D., Brabenec A., Weinstein J., Sehgal P. B., Kushner I. Role of interleukin-6 in regulating synthesis of C-reactive protein and serum amyloid A in human hepatoma cell lines. Biochem Biophys Res Commun. 1988 Nov 30;157(1):271–277. doi: 10.1016/s0006-291x(88)80043-3. [DOI] [PubMed] [Google Scholar]
  15. Ganapathi M. K. Okadaic acid, an inhibitor of protein phosphatases 1 and 2A, inhibits induction of acute-phase proteins by interleukin-6 alone or in combination with interleukin-1 in human hepatoma cell lines. Biochem J. 1992 Jun 15;284(Pt 3):645–648. doi: 10.1042/bj2840645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ganter U., Arcone R., Toniatti C., Morrone G., Ciliberto G. Dual control of C-reactive protein gene expression by interleukin-1 and interleukin-6. EMBO J. 1989 Dec 1;8(12):3773–3779. doi: 10.1002/j.1460-2075.1989.tb08554.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gauldie J., Richards C., Harnish D., Lansdorp P., Baumann H. Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7251–7255. doi: 10.1073/pnas.84.20.7251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Higuchi M., Singh S., Jaffrezou J. P., Aggarwal B. B. Acidic sphingomyelinase-generated ceramide is needed but not sufficient for TNF-induced apoptosis and nuclear factor-kappa B activation. J Immunol. 1996 Jul 1;157(1):297–304. [PubMed] [Google Scholar]
  19. Huwiler A., Brunner J., Hummel R., Vervoordeldonk M., Stabel S., van den Bosch H., Pfeilschifter J. Ceramide-binding and activation defines protein kinase c-Raf as a ceramide-activated protein kinase. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):6959–6963. doi: 10.1073/pnas.93.14.6959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ihle J. N. Cytokine receptor signalling. Nature. 1995 Oct 19;377(6550):591–594. doi: 10.1038/377591a0. [DOI] [PubMed] [Google Scholar]
  21. Jayadev S., Linardic C. M., Hannun Y. A. Identification of arachidonic acid as a mediator of sphingomyelin hydrolysis in response to tumor necrosis factor alpha. J Biol Chem. 1994 Feb 25;269(8):5757–5763. [PubMed] [Google Scholar]
  22. Jiang S. L., Lozanski G., Samols D., Kushner I. Induction of human serum amyloid A in Hep 3B cells by IL-6 and IL-1 beta involves both transcriptional and post-transcriptional mechanisms. J Immunol. 1995 Jan 15;154(2):825–831. [PubMed] [Google Scholar]
  23. Kishimoto T., Akira S., Narazaki M., Taga T. Interleukin-6 family of cytokines and gp130. Blood. 1995 Aug 15;86(4):1243–1254. [PubMed] [Google Scholar]
  24. Kiss Z., Tomono M. Compound D609 inhibits phorbol ester-stimulated phospholipase D activity and phospholipase C-mediated phosphatidylethanolamine hydrolysis. Biochim Biophys Acta. 1995 Oct 26;1259(1):105–108. doi: 10.1016/0005-2760(95)00148-6. [DOI] [PubMed] [Google Scholar]
  25. Kuno K., Matsushima K. The IL-1 receptor signaling pathway. J Leukoc Biol. 1994 Nov;56(5):542–547. doi: 10.1002/jlb.56.5.542. [DOI] [PubMed] [Google Scholar]
  26. Kushner I. Postmodernism, the acute phase response, and interpretation of data. Ann N Y Acad Sci. 1989;557:240–242. doi: 10.1111/j.1749-6632.1989.tb24017.x. [DOI] [PubMed] [Google Scholar]
  27. Kushner I., Rzewnicki D. L. The acute phase response: general aspects. Baillieres Clin Rheumatol. 1994 Aug;8(3):513–530. doi: 10.1016/s0950-3579(05)80113-x. [DOI] [PubMed] [Google Scholar]
  28. Liu P., Anderson R. G. Compartmentalized production of ceramide at the cell surface. J Biol Chem. 1995 Nov 10;270(45):27179–27185. doi: 10.1074/jbc.270.45.27179. [DOI] [PubMed] [Google Scholar]
  29. Mackiewicz A., Speroff T., Ganapathi M. K., Kushner I. Effects of cytokine combinations on acute phase protein production in two human hepatoma cell lines. J Immunol. 1991 May 1;146(9):3032–3037. [PubMed] [Google Scholar]
  30. Masamune A., Igarashi Y., Hakomori S. Regulatory role of ceramide in interleukin (IL)-1 beta-induced E-selectin expression in human umbilical vein endothelial cells. Ceramide enhances IL-1 beta action, but is not sufficient for E-selectin expression. J Biol Chem. 1996 Apr 19;271(16):9368–9375. doi: 10.1074/jbc.271.16.9368. [DOI] [PubMed] [Google Scholar]
  31. Modur V., Zimmerman G. A., Prescott S. M., McIntyre T. M. Endothelial cell inflammatory responses to tumor necrosis factor alpha. Ceramide-dependent and -independent mitogen-activated protein kinase cascades. J Biol Chem. 1996 May 31;271(22):13094–13102. doi: 10.1074/jbc.271.22.13094. [DOI] [PubMed] [Google Scholar]
  32. Price P., McMillan T. J. Use of the tetrazolium assay in measuring the response of human tumor cells to ionizing radiation. Cancer Res. 1990 Mar 1;50(5):1392–1396. [PubMed] [Google Scholar]
  33. Pushkareva M., Obeid L. M., Hannun Y. A. Ceramide: an endogenous regulator of apoptosis and growth suppression. Immunol Today. 1995 Jun;16(6):294–297. doi: 10.1016/0167-5699(95)80184-7. [DOI] [PubMed] [Google Scholar]
  34. Schuchman E. H., Suchi M., Takahashi T., Sandhoff K., Desnick R. J. Human acid sphingomyelinase. Isolation, nucleotide sequence and expression of the full-length and alternatively spliced cDNAs. J Biol Chem. 1991 May 5;266(13):8531–8539. [PubMed] [Google Scholar]
  35. Schütze S., Machleidt T., Krönke M. The role of diacylglycerol and ceramide in tumor necrosis factor and interleukin-1 signal transduction. J Leukoc Biol. 1994 Nov;56(5):533–541. doi: 10.1002/jlb.56.5.533. [DOI] [PubMed] [Google Scholar]
  36. Serhan C. N., Haeggström J. Z., Leslie C. C. Lipid mediator networks in cell signaling: update and impact of cytokines. FASEB J. 1996 Aug;10(10):1147–1158. doi: 10.1096/fasebj.10.10.8751717. [DOI] [PubMed] [Google Scholar]
  37. Sipe J. D., Colten H. R., Goldberger G., Edge M. D., Tack B. F., Cohen A. S., Whitehead A. S. Human serum amyloid A (SAA): biosynthesis and postsynthetic processing of preSAA and structural variants defined by complementary DNA. Biochemistry. 1985 Jun 4;24(12):2931–2936. doi: 10.1021/bi00333a018. [DOI] [PubMed] [Google Scholar]
  38. Skowronski E. W., Kolesnick R. N., Green D. R. Fas-mediated apoptosis and sphingomyelinase signal transduction: the role of ceramide as a second messenger for apoptosis. Cell Death Differ. 1996 Apr;3(2):171–176. [PubMed] [Google Scholar]
  39. Spiegel S., Foster D., Kolesnick R. Signal transduction through lipid second messengers. Curr Opin Cell Biol. 1996 Apr;8(2):159–167. doi: 10.1016/s0955-0674(96)80061-5. [DOI] [PubMed] [Google Scholar]
  40. Testi R. Sphingomyelin breakdown and cell fate. Trends Biochem Sci. 1996 Dec;21(12):468–471. doi: 10.1016/s0968-0004(96)10056-6. [DOI] [PubMed] [Google Scholar]
  41. Tschaikowsky K., Meisner M., Schönhuber F., Rügheimer E. Induction of nitric oxide synthase activity in phagocytic cells inhibited by tricyclodecan-9-yl-xanthogenate (D609). Br J Pharmacol. 1994 Nov;113(3):664–668. doi: 10.1111/j.1476-5381.1994.tb17043.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tso J. Y., Sun X. H., Kao T. H., Reece K. S., Wu R. Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: genomic complexity and molecular evolution of the gene. Nucleic Acids Res. 1985 Apr 11;13(7):2485–2502. doi: 10.1093/nar/13.7.2485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tucci A., Goldberger G., Whitehead A. S., Kay R. M., Woods D. E., Colten H. R. Biosynthesis and postsynthetic processing of human C-reactive protein. J Immunol. 1983 Nov;131(5):2416–2419. [PubMed] [Google Scholar]
  44. Verheij M., Bose R., Lin X. H., Yao B., Jarvis W. D., Grant S., Birrer M. J., Szabo E., Zon L. I., Kyriakis J. M. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature. 1996 Mar 7;380(6569):75–79. doi: 10.1038/380075a0. [DOI] [PubMed] [Google Scholar]
  45. Wiegmann K., Schütze S., Machleidt T., Witte D., Krönke M. Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell. 1994 Sep 23;78(6):1005–1015. doi: 10.1016/0092-8674(94)90275-5. [DOI] [PubMed] [Google Scholar]
  46. Zhang D., Jiang S. L., Rzewnicki D., Samols D., Kushner I. The effect of interleukin-1 on C-reactive protein expression in Hep3B cells is exerted at the transcriptional level. Biochem J. 1995 Aug 15;310(Pt 1):143–148. doi: 10.1042/bj3100143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zhang D., Sun M., Samols D., Kushner I. STAT3 participates in transcriptional activation of the C-reactive protein gene by interleukin-6. J Biol Chem. 1996 Apr 19;271(16):9503–9509. doi: 10.1074/jbc.271.16.9503. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES