Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Nov 15;328(Pt 1):287–292. doi: 10.1042/bj3280287

Characterization of homocysteine metabolism in the rat kidney.

J D House 1, M E Brosnan 1, J T Brosnan 1
PMCID: PMC1218919  PMID: 9359866

Abstract

Epidemiological studies have provided strong evidence that an elevated plasma homocysteine concentration is an important independent risk factor for cardiovascular disease. We have shown, in the rat, that the kidney is a major site for the removal and subsequent metabolism of plasma homocysteine [Bostom, Brosnan, Hall, Nadeau and Selhub (1995) Atherosclerosis 116, 59-62]. To characterize the role of the kidney in homocysteine metabolism further, we measured the disappearance of homocysteine in isolated renal cortical tubules of the rat. Renal tubules metabolized homocysteine primarily through the transulphuration pathway, producing cystathionine and cysteine (78% of homocysteine disappearance). Methionine production accounted for less than 2% of the disappearance of homocysteine. Cystathionine, and subsequently cysteine, production rates, as well as the rate of disappearance of homocysteine, were sensitive to the level of serine in the incubation medium, as increased serine concentrations permitted higher rates of cystathionine and cysteine production. On the basis of enrichment profiles of cystathionine beta-synthase and cystathionine gamma-lyase, in comparison with marker enzymes of known location, we concluded that cystathionine beta-synthase was enriched in the outer cortex, specifically in cells of the proximal convoluted tubule. Cystathionine gamma-lyase exhibited higher enrichment patterns in the inner cortex and outer medulla, with strong evidence of an enrichment in cells of the proximal straight tubule. These studies indicate that factors that influence the transulphuration of homocysteine may influence the renal clearance of this amino acid.

Full Text

The Full Text of this article is available as a PDF (204.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott W. A., Bridges R. J., Meister A. Extracellular metabolism of glutathione accounts for its disappearance from the basolateral circulation of the kidney. J Biol Chem. 1984 Dec 25;259(24):15393–15400. [PubMed] [Google Scholar]
  2. BRADLEY L. B., JACOB M., JACOBS E. E., SANADI D. R. Uncoupling of oxidative phosphorylation by cadmium ion. J Biol Chem. 1956 Nov;223(1):147–156. [PubMed] [Google Scholar]
  3. Bostom A., Brosnan J. T., Hall B., Nadeau M. R., Selhub J. Net uptake of plasma homocysteine by the rat kidney in vivo. Atherosclerosis. 1995 Jul;116(1):59–62. doi: 10.1016/0021-9150(95)05522-x. [DOI] [PubMed] [Google Scholar]
  4. DE LA HABA G., CANTONI G. L. The enzymatic synthesis of S-adenosyl-L-homocysteine from adenosine and homocysteine. J Biol Chem. 1959 Mar;234(3):603–608. [PubMed] [Google Scholar]
  5. Dhanakoti S. N., Brosnan J. T., Herzberg G. R., Brosnan M. E. Renal arginine synthesis: studies in vitro and in vivo. Am J Physiol. 1990 Sep;259(3 Pt 1):E437–E442. doi: 10.1152/ajpendo.1990.259.3.E437. [DOI] [PubMed] [Google Scholar]
  6. Dhanakoti S. N., Brosnan M. E., Herzberg G. R., Brosnan J. T. Cellular and subcellular localization of enzymes of arginine metabolism in rat kidney. Biochem J. 1992 Mar 1;282(Pt 2):369–375. doi: 10.1042/bj2820369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Finkelstein J. D., Kyle W., Harris B. J. Methionine metabolism in mammals. Regulation of homocysteine methyltransferases in rat tissue. Arch Biochem Biophys. 1971 Sep;146(1):84–92. doi: 10.1016/s0003-9861(71)80044-9. [DOI] [PubMed] [Google Scholar]
  8. Foreman J. W., Wald H., Blumberg G., Pepe L. M., Segal S. Homocystine uptake in isolated rat renal cortical tubules. Metabolism. 1982 Jun;31(6):613–619. doi: 10.1016/0026-0495(82)90101-9. [DOI] [PubMed] [Google Scholar]
  9. Guder W. G., Schmidt U. The localization of gluconeogenesis in rat nephron. Determination of phosphoenolpyruvate carboxykinase in microdissected tubules. Hoppe Seylers Z Physiol Chem. 1974 Mar;355(3):273–278. doi: 10.1515/bchm2.1974.355.1.273. [DOI] [PubMed] [Google Scholar]
  10. Guder W., Wiesner W., Stukowski B., Wieland O. Metabolism of isolated kidney tubules. Oxygen consumption, gluconeogenesis and the effect of cyclic nucleotides in tubules from starved rats. Hoppe Seylers Z Physiol Chem. 1971 Oct;352(10):1319–1328. doi: 10.1515/bchm2.1971.352.2.1319. [DOI] [PubMed] [Google Scholar]
  11. Guttormsen A. B., Schneede J., Ueland P. M., Refsum H. Kinetics of total plasma homocysteine in subjects with hyperhomocysteinemia due to folate or cobalamin deficiency. Am J Clin Nutr. 1996 Feb;63(2):194–202. doi: 10.1093/ajcn/63.2.194. [DOI] [PubMed] [Google Scholar]
  12. Heinle H., Wendel A. The activities of the key enzymes of the gamma-glutamyl cycle in microdissected segments of the rat nephron. FEBS Lett. 1977 Feb 1;73(2):220–224. doi: 10.1016/0014-5793(77)80985-x. [DOI] [PubMed] [Google Scholar]
  13. Jones B. N., Gilligan J. P. o-Phthaldialdehyde precolumn derivatization and reversed-phase high-performance liquid chromatography of polypeptide hydrolysates and physiological fluids. J Chromatogr. 1983 Aug 26;266:471–482. doi: 10.1016/s0021-9673(01)90918-5. [DOI] [PubMed] [Google Scholar]
  14. Kang S. S., Wong P. W., Malinow M. R. Hyperhomocyst(e)inemia as a risk factor for occlusive vascular disease. Annu Rev Nutr. 1992;12:279–298. doi: 10.1146/annurev.nu.12.070192.001431. [DOI] [PubMed] [Google Scholar]
  15. Levillain O., Hus-Citharel A., Morel F., Bankir L. Production of urea from arginine in pars recta and collecting duct of the rat kidney. Ren Physiol Biochem. 1989 Sep-Dec;12(5-6):302–312. doi: 10.1159/000173207. [DOI] [PubMed] [Google Scholar]
  16. Lowry M., Hall D. E., Brosnan J. T. Serine synthesis in rat kidney: studies with perfused kidney and cortical tubules. Am J Physiol. 1986 Apr;250(4 Pt 2):F649–F658. doi: 10.1152/ajprenal.1986.250.4.F649. [DOI] [PubMed] [Google Scholar]
  17. Lowry M., Hall D. E., Hall M. S., Brosnan J. T. Renal metabolism of amino acids in vivo: studies on serine and glycine fluxes. Am J Physiol. 1987 Feb;252(2 Pt 2):F304–F309. doi: 10.1152/ajprenal.1987.252.2.F304. [DOI] [PubMed] [Google Scholar]
  18. Miller J. W., Nadeau M. R., Smith J., Smith D., Selhub J. Folate-deficiency-induced homocysteinaemia in rats: disruption of S-adenosylmethionine's co-ordinate regulation of homocysteine metabolism. Biochem J. 1994 Mar 1;298(Pt 2):415–419. doi: 10.1042/bj2980415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Miller W. L., Thomas R. A., Berne R. M., Rubio R. Adenosine production in the ischemic kidney. Circ Res. 1978 Sep;43(3):390–397. doi: 10.1161/01.res.43.3.390. [DOI] [PubMed] [Google Scholar]
  20. Mudd S. H., Finkelstein J. D., Irreverre F., Laster L. Transsulfuration in mammals. Microassays and tissue distributions of three enzymes of the pathway. J Biol Chem. 1965 Nov;240(11):4382–4392. [PubMed] [Google Scholar]
  21. Nishi N., Kagawa Y., Miyanaka H., Oya H., Wada F. An anti-probasin monoclonal antibody recognizes a novel 40-kDa protein localized in rat liver and a specific region of kidney urinary tubule. Biochim Biophys Acta. 1992 Jul 21;1117(1):47–54. doi: 10.1016/0304-4165(92)90161-m. [DOI] [PubMed] [Google Scholar]
  22. Nishi N., Tanabe H., Oya H., Urushihara M., Miyanaka H., Wada F. Identification of probasin-related antigen as cystathionine gamma-lyase by molecular cloning. J Biol Chem. 1994 Jan 14;269(2):1015–1019. [PubMed] [Google Scholar]
  23. Refsum H., Ueland P. M. Clinical significance of pharmacological modulation of homocysteine metabolism. Trends Pharmacol Sci. 1990 Oct;11(10):411–416. doi: 10.1016/0165-6147(90)90148-2. [DOI] [PubMed] [Google Scholar]
  24. Schmidt U., Marosvari I., Dubach U. C. Renal metabolism of glucose: anatomical sites of hexokinase activity in the rat nephron. FEBS Lett. 1975 Apr 15;53(1):26–28. doi: 10.1016/0014-5793(75)80673-9. [DOI] [PubMed] [Google Scholar]
  25. Seubert W., Huth W. On the mechanism of gluconeogenesis and its regulation. II. The mechanism of gluconeogenesis from pyruvate and fumarate. Biochem Z. 1965 Nov 15;343(2):176–191. [PubMed] [Google Scholar]
  26. Stipanuk M. H., De la Rosa J., Hirschberger L. L. Catabolism of cyst(e)ine by rat renal cortical tubules. J Nutr. 1990 May;120(5):450–458. doi: 10.1093/jn/120.5.450. [DOI] [PubMed] [Google Scholar]
  27. Stipanuk M. H. Effect of excess dietary methionine on the catabolism of cysteine in rats. J Nutr. 1979 Dec;109(12):2126–2139. doi: 10.1093/jn/109.12.2126. [DOI] [PubMed] [Google Scholar]
  28. Tate S. S., Meister A. Interaction of gamma-glutamyl transpeptidase with amino acids, dipeptides, and derivatives and analogs of glutathione. J Biol Chem. 1974 Dec 10;249(23):7593–7602. [PubMed] [Google Scholar]
  29. Uerre J. A., Miller C. H. Preparation of L-homocysteine from L-homocysteine thiolactone. Anal Biochem. 1966 Nov;17(2):310–315. doi: 10.1016/0003-2697(66)90209-0. [DOI] [PubMed] [Google Scholar]
  30. VINUELA E., SALAS M., SOLS A. Glucokinase and hexokinase in liver in relation to glycogen synthesis. J Biol Chem. 1963 Mar;238:1175–1177. [PubMed] [Google Scholar]
  31. Vester B., Rasmussen K. High performance liquid chromatography method for rapid and accurate determination of homocysteine in plasma and serum. Eur J Clin Chem Clin Biochem. 1991 Sep;29(9):549–554. doi: 10.1515/cclm.1991.29.9.549. [DOI] [PubMed] [Google Scholar]
  32. Vinay P., Gougoux A., Lemieux G. Isolation of a pure suspension of rat proximal tubules. Am J Physiol. 1981 Oct;241(4):F403–F411. doi: 10.1152/ajprenal.1981.241.4.F403. [DOI] [PubMed] [Google Scholar]
  33. Wilson M. J., Shivapurkar N., Poirier L. A. Hypomethylation of hepatic nuclear DNA in rats fed with a carcinogenic methyl-deficient diet. Biochem J. 1984 Mar 15;218(3):987–990. doi: 10.1042/bj2180987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES