Abstract
Arginine kinase (AK) was isolated from the body wall muscle of the primitive sea anemone Anthopleura japonicus by Ultrogel AcA34 gel filtration, DEAE-32 chromatography and elution on a Cosmogel-SP column. The denatured molecular mass as determined with SDS/PAGE was 80 kDa, twice that of the usual AK subunit, indicating that this AK has an unusual two-domain structure. The native form was eluted on a Superose 12 column with the same retention time as that of rabbit homodimeric creatine kinase, indicating that Anthopleura AK is a monomer of 80 kDa. The isolated enzyme gave a specific activity of 100-120 micromol of Pi/min per mg of protein in the pH range 7.9-9.1 for the forward reaction. The enzyme is fully activated by Ca2+, as it is with Mg2+. The cDNA-derived amino acid sequence of 715 residues of Anthopleura AK was determined. The validity of the sequence was supported by chemical sequencing of internal tryptic peptides. A bridge intron of 686 bp, which separates the two domains of Anthopleura AK, is present between the second and third nucleotide in the codon of Ala-364. This is the first two-domain AK to be sequenced. Anthopleura AK shows 48-54% amino acid sequence identity with known invertebrate AKs, and also shows a lower, but significant, similarity (39-46%) to marine worm glycocyamine kinase and rabbit creatine kinase.
Full Text
The Full Text of this article is available as a PDF (879.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker G. T., 3rd Purification and some properties of ATP: arginine phosphotransferase from sea anemones, Condylactis aurantiaca. Comp Biochem Physiol B. 1975 Dec 15;52(4):503–506. doi: 10.1016/0305-0491(75)90225-4. [DOI] [PubMed] [Google Scholar]
- Chen L. H., Borders C. L., Jr, Vásquez J. R., Kenyon G. L. Rabbit muscle creatine kinase: consequences of the mutagenesis of conserved histidine residues. Biochemistry. 1996 Jun 18;35(24):7895–7902. doi: 10.1021/bi952798i. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Dumas C., Camonis J. Cloning and sequence analysis of the cDNA for arginine kinase of lobster muscle. J Biol Chem. 1993 Oct 15;268(29):21599–21605. [PubMed] [Google Scholar]
- Feng D. F., Doolittle R. F. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol. 1987;25(4):351–360. doi: 10.1007/BF02603120. [DOI] [PubMed] [Google Scholar]
- Fritz-Wolf K., Schnyder T., Wallimann T., Kabsch W. Structure of mitochondrial creatine kinase. Nature. 1996 May 23;381(6580):341–345. doi: 10.1038/381341a0. [DOI] [PubMed] [Google Scholar]
- Furter R., Furter-Graves E. M., Wallimann T. Creatine kinase: the reactive cysteine is required for synergism but is nonessential for catalysis. Biochemistry. 1993 Jul 13;32(27):7022–7029. doi: 10.1021/bi00078a030. [DOI] [PubMed] [Google Scholar]
- Furukohri T., Okamoto S., Suzuki T. Evolution of phosphagen kinase (III). Amino acid sequence of arginine kinase from the shrimp Penaeus japonicus. Zoolog Sci. 1994 Apr;11(2):229–234. [PubMed] [Google Scholar]
- Gaffney T. J., Rosenberg H., Ennor A. H. The purification and properties of adenosine triphosphate-lombricine phosphotransferase. Biochem J. 1964 Jan;90(1):170–176. doi: 10.1042/bj0900170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kenyon G. L., Reed G. H. Creatine kinase: structure-activity relationships. Adv Enzymol Relat Areas Mol Biol. 1983;54:367–426. doi: 10.1002/9780470122990.ch6. [DOI] [PubMed] [Google Scholar]
- Mühlebach S. M., Gross M., Wirz T., Wallimann T., Perriard J. C., Wyss M. Sequence homology and structure predictions of the creatine kinase isoenzymes. Mol Cell Biochem. 1994 Apr-May;133-134:245–262. doi: 10.1007/BF01267958. [DOI] [PubMed] [Google Scholar]
- Putney S., Herlihy W., Royal N., Pang H., Aposhian H. V., Pickering L., Belagaje R., Biemann K., Page D., Kuby S. Rabbit muscle creatine phosphokinase. CDNA cloning, primary structure and detection of human homologues. J Biol Chem. 1984 Dec 10;259(23):14317–14320. [PubMed] [Google Scholar]
- Robin Y., Viala B. Sur la presence d'ATP: arginine phosphotransferase chez Tetrahymena pyriformis W. Cambridge. Comp Biochem Physiol. 1966 Jun;18(2):405–413. doi: 10.1016/0010-406x(66)90198-8. [DOI] [PubMed] [Google Scholar]
- Rosevear P. R., Desmeules P., Kenyon G. L., Mildvan A. S. Nuclear magnetic resonance studies of the role of histidine residues at the active site of rabbit muscle creatine kinase. Biochemistry. 1981 Oct 13;20(21):6155–6164. doi: 10.1021/bi00524a038. [DOI] [PubMed] [Google Scholar]
- Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
- Stein L. D., Harn D. A., David J. R. A cloned ATP:guanidino kinase in the trematode Schistosoma mansoni has a novel duplicated structure. J Biol Chem. 1990 Apr 25;265(12):6582–6588. [PubMed] [Google Scholar]
- Strong S. J., Ellington W. R. Isolation and sequence analysis of the gene for arginine kinase from the chelicerate arthropod, Limulus polyphemus: insights into catalytically important residues. Biochim Biophys Acta. 1995 Jan 19;1246(2):197–200. doi: 10.1016/0167-4838(94)00218-6. [DOI] [PubMed] [Google Scholar]
- Suzuki T., Ban T., Furukohri T. Evolution of phosphagen kinase V. cDNA-derived amino acid sequences of two molluscan arginine kinases from the chiton Liolophura japonica and the turbanshell Battilus cornutus. Biochim Biophys Acta. 1997 Jun 20;1340(1):1–6. doi: 10.1016/s0167-4838(97)00066-6. [DOI] [PubMed] [Google Scholar]
- Suzuki T., Furukohri T. Evolution of phosphagen kinase. Primary structure of glycocyamine kinase and arginine kinase from invertebrates. J Mol Biol. 1994 Apr 1;237(3):353–357. doi: 10.1006/jmbi.1994.1237. [DOI] [PubMed] [Google Scholar]
- Suzuki T., Takagi T., Gotoh T. Primary structure of two linker chains of the extracellular hemoglobin from the polychaete Tylorrhynchus heterochaetus. J Biol Chem. 1990 Jul 25;265(21):12168–12177. [PubMed] [Google Scholar]
- Vasák M., Nagayama K., Wüthrich K., Mertens M. L., Kägi J. H. Creatine kinase. Nuclear magnetic resonance and fluorescence evidence for interaction of adenosine 5'-diphosphate with aromatic residue(s). Biochemistry. 1979 Nov 13;18(23):5050–5055. doi: 10.1021/bi00590a004. [DOI] [PubMed] [Google Scholar]
- Wothe D. D., Charbonneau H., Shapiro B. M. The phosphocreatine shuttle of sea urchin sperm: flagellar creatine kinase resulted from a gene triplication. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5203–5207. doi: 10.1073/pnas.87.13.5203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wyss M., Maughan D., Wallimann T. Re-evaluation of the structure and physiological function of guanidino kinases in fruitfly (Drosophila), sea urchin (Psammechinus miliaris) and man. Biochem J. 1995 Jul 1;309(Pt 1):255–261. doi: 10.1042/bj3090255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wyss M., Smeitink J., Wevers R. A., Wallimann T. Mitochondrial creatine kinase: a key enzyme of aerobic energy metabolism. Biochim Biophys Acta. 1992 Sep 25;1102(2):119–166. doi: 10.1016/0005-2728(92)90096-k. [DOI] [PubMed] [Google Scholar]
