Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Nov 15;328(Pt 1):317–320. doi: 10.1042/bj3280317

Relaxed enantioselectivity of human mitochondrial thymidine kinase and chemotherapeutic uses of L-nucleoside analogues.

A Verri 1, G Priori 1, S Spadari 1, L Tondelli 1, F Focher 1
PMCID: PMC1218923  PMID: 9359870

Abstract

Our discovery that Herpes virus thymidine kinase (TK) and cellular deoxycytidine kinase lack enantioselectivity, being able to phosphorylate both D- and L-enantiomers of the substrate, suggested the use of unnatural L-nucleoside analogues as antiviral drugs (Herpes, hepatitis and immunodeficiency viruses). Several L-nucleoside analogues have displayed a short-term cytotoxicity much lower than their corresponding D-counterpart. Since the delayed cytotoxicity of a drug often depends on its effects on mitochondrial metabolism, we have investigated the degree of enantioselectivity of human mitochondrial thymidine kinase (mt-TK). We demonstrate that mt-TK does not show an absolute enantioselectivity, being able to recognize, although with lower efficiency, the L-enantiomers of thymidine, deoxycytidine and modified deoxyuridines, such as (E)-5-(2-bromovinyl)-2'-deoxyuridine and 5-iodo-2'-deoxyuridine. Interestingly, the reported negative co-operativity of mt-TK phosphorylating beta-D-2'-deoxythymidine (D-Thd), disappears when the deoxyribose moiety has the inverted configuration, resulting in the preferential phosphorylation of d-Thd even in the presence of high concentrations of the L-enantiomer. This, coupled with the higher Km for beta-L-2'-deoxythymidine (L-Thd), makes mt-TK resistant to high concentrations of L-Thd and L-Thd analogues, minimizing the mitochondria-dependent delayed cytotoxicity that might be caused by the administration of L-nucleoside analogues as antivirals.

Full Text

The Full Text of this article is available as a PDF (283.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balzarini J., De Clercq E., Baumgartner H., Bodenteich M., Griengl H. Carbocyclic 5-iodo-2'-deoxyuridine (C-IDU) and carbocyclic (E)-5-(2-bromovinyl)-2'-deoxyuridine (C-BVDU) as unique examples of chiral molecules where the two enantiomeric forms are biologically active: interaction of the (+)- and (-)-enantiomers of C-IDU and C-BVDU with the thymidine kinase of herpes simplex virus type 1. Mol Pharmacol. 1990 Mar;37(3):395–401. [PubMed] [Google Scholar]
  2. Balzarini J., De Clercq E. Inhibitory effects of (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) and related compounds on herpes simplex virus (HSV)-infected cells and HSV thymidine kinase gene-transformed cells. Methods Find Exp Clin Pharmacol. 1989 Jun;11(6):379–389. [PubMed] [Google Scholar]
  3. Bennett L. L., Jr, Parker W. B., Allan P. W., Rose L. M., Shealy Y. F., Secrist J. A., 3rd, Montgomery J. A., Arnett G., Kirkman R. L., Shannon W. M. Phosphorylation of the enantiomers of the carbocyclic analog of 2'-deoxyguanosine in cells infected with herpes simplex virus type 1 and in uninfected cells. Lack of enantiomeric selectivity with the viral thymidine kinase. Mol Pharmacol. 1993 Dec;44(6):1258–1266. [PubMed] [Google Scholar]
  4. Bolden A., Noy G. P., Weissbach A. DNA polymerase of mitochondria is a gamma-polymerase. J Biol Chem. 1977 May 25;252(10):3351–3356. [PubMed] [Google Scholar]
  5. Chang C. N., Skalski V., Zhou J. H., Cheng Y. C. Biochemical pharmacology of (+)- and (-)-2',3'-dideoxy-3'-thiacytidine as anti-hepatitis B virus agents. J Biol Chem. 1992 Nov 5;267(31):22414–22420. [PubMed] [Google Scholar]
  6. Chen C. H., Cheng Y. C. Delayed cytotoxicity and selective loss of mitochondrial DNA in cells treated with the anti-human immunodeficiency virus compound 2',3'-dideoxycytidine. J Biol Chem. 1989 Jul 15;264(20):11934–11937. [PubMed] [Google Scholar]
  7. Cheng Y. C., Dutschman G., Fox J. J., Watanabe K. A., Machida H. Differential activity of potential antiviral nucleoside analogs on herpes simplex virus-induced and human cellular thymidine kinases. Antimicrob Agents Chemother. 1981 Sep;20(3):420–423. doi: 10.1128/aac.20.3.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Desgranges C., Razaka G., Rabaud M., Bricaud H., Balzarini J., De Clercq E. Phosphorolysis of (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) and other 5-substituted-2'-deoxyuridines by purified human thymidine phosphorylase and intact blood platelets. Biochem Pharmacol. 1983 Dec 1;32(23):3583–3590. doi: 10.1016/0006-2952(83)90307-6. [DOI] [PubMed] [Google Scholar]
  9. Durham J. P., Ives D. H. Deoxycytidine kinase. II. Purification and general properties of the calf thymus enzyme. J Biol Chem. 1970 May 10;245(9):2276–2284. [PubMed] [Google Scholar]
  10. Eriksson S., Kierdaszuk B., Munch-Petersen B., Oberg B., Johansson N. G. Comparison of the substrate specificities of human thymidine kinase 1 and 2 and deoxycytidine kinase toward antiviral and cytostatic nucleoside analogs. Biochem Biophys Res Commun. 1991 Apr 30;176(2):586–592. doi: 10.1016/s0006-291x(05)80224-4. [DOI] [PubMed] [Google Scholar]
  11. Gentry G. A. Viral thymidine kinases and their relatives. Pharmacol Ther. 1992;54(3):319–355. doi: 10.1016/0163-7258(92)90006-l. [DOI] [PubMed] [Google Scholar]
  12. Gosselin G., Schinazi R. F., Sommadossi J. P., Mathé C., Bergogne M. C., Aubertin A. M., Kirn A., Imbach J. L. Anti-human immunodeficiency virus activities of the beta-L enantiomer of 2',3'-dideoxycytidine and its 5-fluoro derivative in vitro. Antimicrob Agents Chemother. 1994 Jun;38(6):1292–1297. doi: 10.1128/aac.38.6.1292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harrison P. T., Thompson R., Davison A. J. Evolution of herpesvirus thymidine kinases from cellular deoxycytidine kinase. J Gen Virol. 1991 Oct;72(Pt 10):2583–2586. doi: 10.1099/0022-1317-72-10-2583. [DOI] [PubMed] [Google Scholar]
  14. Lee L. S., Cheng Y. c. Human deoxythymidine kinase II: substrate specificity and kinetic behavior of the cytoplasmic and mitochondrial isozymes derived from blast cells of acute myelocytic leukemia. Biochemistry. 1976 Aug 24;15(17):3686–3690. doi: 10.1021/bi00662a007. [DOI] [PubMed] [Google Scholar]
  15. Lin T. S., Luo M. Z., Liu M. C., Pai S. B., Dutschman G. E., Cheng Y. C. Synthesis and biological evaluation of 2',3'-dideoxy-L-pyrimidine nucleosides as potential antiviral agents against human immunodeficiency virus (HIV) and hepatitis B virus (HBV). J Med Chem. 1994 Mar 18;37(6):798–803. doi: 10.1021/jm00032a013. [DOI] [PubMed] [Google Scholar]
  16. Maga G., Verri A., Bonizzi L., Ponti W., Poli G., Garbesi A., Niccolai D., Spadari S., Focher F. Lack of stereospecificity of suid pseudorabies virus thymidine kinase. Biochem J. 1993 Sep 1;294(Pt 2):381–385. doi: 10.1042/bj2940381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Munch-Petersen B., Cloos L., Tyrsted G., Eriksson S. Diverging substrate specificity of pure human thymidine kinases 1 and 2 against antiviral dideoxynucleosides. J Biol Chem. 1991 May 15;266(14):9032–9038. [PubMed] [Google Scholar]
  18. Schinazi R. F., Gosselin G., Faraj A., Korba B. E., Liotta D. C., Chu C. K., Mathé C., Imbach J. L., Sommadossi J. P. Pure nucleoside enantiomers of beta-2',3'-dideoxycytidine analogs are selective inhibitors of hepatitis B virus in vitro. Antimicrob Agents Chemother. 1994 Sep;38(9):2172–2174. doi: 10.1128/aac.38.9.2172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schinazi R. F., McMillan A., Cannon D., Mathis R., Lloyd R. M., Peck A., Sommadossi J. P., St Clair M., Wilson J., Furman P. A. Selective inhibition of human immunodeficiency viruses by racemates and enantiomers of cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine. Antimicrob Agents Chemother. 1992 Nov;36(11):2423–2431. doi: 10.1128/aac.36.11.2423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shewach D. S., Liotta D. C., Schinazi R. F. Affinity of the antiviral enantiomers of oxathiolane cytosine nucleosides for human 2'-deoxycytidine kinase. Biochem Pharmacol. 1993 Apr 6;45(7):1540–1543. doi: 10.1016/0006-2952(93)90058-5. [DOI] [PubMed] [Google Scholar]
  21. Spadari S., Ciarrocchi G., Focher F., Verri A., Maga G., Arcamone F., Iafrate E., Manzini S., Garbesi A., Tondelli L. 5-Iodo-2'-deoxy-L-uridine and (E)-5-(2-bromovinyl)-2'-deoxy-L-uridine: selective phosphorylation by herpes simplex virus type 1 thymidine kinase, antiherpetic activity, and cytotoxicity studies. Mol Pharmacol. 1995 Jun;47(6):1231–1238. [PubMed] [Google Scholar]
  22. Spadari S., Maga G., Focher F., Ciarrocchi G., Manservigi R., Arcamone F., Capobianco M., Carcuro A., Colonna F., Iotti S. L-thymidine is phosphorylated by herpes simplex virus type 1 thymidine kinase and inhibits viral growth. J Med Chem. 1992 Oct 30;35(22):4214–4220. doi: 10.1021/jm00100a029. [DOI] [PubMed] [Google Scholar]
  23. Spadari S., Maga G., Verri A., Bendiscioli A., Tondelli L., Capobianco M., Colonna F., Garbesi A., Focher F. Lack of stereospecificity of some cellular and viral enzymes involved in the synthesis of deoxyribonucleotides and DNA: molecular basis for the antiviral activity of unnatural L-beta-nucleosides. Biochimie. 1995;77(11):861–867. doi: 10.1016/0300-9084(95)90004-7. [DOI] [PubMed] [Google Scholar]
  24. Verri A., Focher F., Priori G., Gosselin G., Imbach J. L., Capobianco M., Garbesi A., Spadari S. Lack of enantiospecificity of human 2'-deoxycytidine kinase: relevance for the activation of beta-L-deoxycytidine analogs as antineoplastic and antiviral agents. Mol Pharmacol. 1997 Jan;51(1):132–138. doi: 10.1124/mol.51.1.132. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES