Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Dec 1;328(Pt 2):377–382. doi: 10.1042/bj3280377

Recombinant 2-enoyl-CoA hydratase derived from rat peroxisomal multifunctional enzyme 2: role of the hydratase reaction in bile acid synthesis.

Y M Qin 1, A M Haapalainen 1, D Conry 1, D A Cuebas 1, J K Hiltunen 1, D K Novikov 1
PMCID: PMC1218931  PMID: 9371691

Abstract

Rat liver peroxisomes contain two multifunctional enzymes: (1) perMFE-1 [2-enoyl-CoA hydratase 1/Delta3,Delta2-enoyl-CoA isomerase/(S)-3-hydroxyacyl-CoA dehydrogenase] and (2) perMFE-2 [2-enoyl-CoA hydratase 2/(R)-3-hydroxyacyl-CoA dehydrogenase]. To investigate the role of the hydratase activity of perMFE-2 in beta-oxidation, a truncated version of perMFE-2 was expressed in Escherichia coli as a recombinant protein. The protein catalyses the hydration of straight-chain (2E)-enoyl-CoAs to (3R)-hydroxyacyl-CoAs, but it is devoid of hydratase 1 [(2E)-enoyl-CoA to (3S)-hydroxyacyl-CoA] and (3R)-hydroxyacyl-CoA dehydrogenase activities. The purified enzyme (46 kDa hydratase 2) can be stored as an active enzyme for at least half a year. The recombinant enzyme hydrates (24E)-3alpha,7alpha,12alpha-trihydroxy- 5beta-cholest-24-enoyl-CoA to (24R,25R)-3alpha,7alpha,12alpha, 24-tetrahydroxy-5beta-cholestanoyl-CoA, which has previously been characterized as a physiological intermediate in bile acid synthesis. The stereochemistry of the products indicates that the hydration reaction catalysed by the enzyme proceeds via a syn mechanism. A monofunctional 2-enoyl-CoA hydratase 2 has not been observed as a wild-type protein. The recombinant 46 kDa hydratase 2 described here survives in a purified form under storage, thus being the first protein of this type amenable to application as a tool in metabolic studies.

Full Text

The Full Text of this article is available as a PDF (408.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batta A. K., Tint G. S., Dayal B., Shefer S., Salen G. Improved synthesis of 3 alpha, 7 alpha, 12 alpha, 24 = xi-tetrahydroxy-5 beta-cholestan-26-oic acid. Steroids. 1982 Jun;39(6):693–702. doi: 10.1016/0039-128x(82)90140-4. [DOI] [PubMed] [Google Scholar]
  2. Bodnar A. G., Rachubinski R. A. Cloning and sequence determination of cDNA encoding a second rat liver peroxisomal 3-ketoacyl-CoA thiolase. Gene. 1990 Jul 16;91(2):193–199. doi: 10.1016/0378-1119(90)90088-9. [DOI] [PubMed] [Google Scholar]
  3. Dieuaide-Noubhani M., Novikov D., Baumgart E., Vanhooren J. C., Fransen M., Goethals M., Vandekerckhove J., Van Veldhoven P. P., Mannaerts G. P. Further characterization of the peroxisomal 3-hydroxyacyl-CoA dehydrogenases from rat liver. Relationship between the different dehydrogenases and evidence that fatty acids and the C27 bile acids di- and tri-hydroxycoprostanic acids are metabolized by separate multifunctional proteins. Eur J Biochem. 1996 Sep 15;240(3):660–666. doi: 10.1111/j.1432-1033.1996.0660h.x. [DOI] [PubMed] [Google Scholar]
  4. Engel C. K., Mathieu M., Zeelen J. P., Hiltunen J. K., Wierenga R. K. Crystal structure of enoyl-coenzyme A (CoA) hydratase at 2.5 angstroms resolution: a spiral fold defines the CoA-binding pocket. EMBO J. 1996 Oct 1;15(19):5135–5145. [PMC free article] [PubMed] [Google Scholar]
  5. Farrants A. K., Andersen G. I., Byström S. E. Configuration of the 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholest-24-enoic acid, an intermediate in the peroxisomal conversion of 3 alpha,7 alpha,12-trihydroxy-5 beta-cholestanoic acid to cholic acid in rat liver. Biochem Int. 1992 Mar;26(4):725–730. [PubMed] [Google Scholar]
  6. Filppula S. A., Sormunen R. T., Hartig A., Kunau W. H., Hiltunen J. K. Changing stereochemistry for a metabolic pathway in vivo. Experiments with the peroxisomal beta-oxidation in yeast. J Biol Chem. 1995 Nov 17;270(46):27453–27457. doi: 10.1074/jbc.270.46.27453. [DOI] [PubMed] [Google Scholar]
  7. Hiltunen J. K., Palosaari P. M., Kunau W. H. Epimerization of 3-hydroxyacyl-CoA esters in rat liver. Involvement of two 2-enoyl-CoA hydratases. J Biol Chem. 1989 Aug 15;264(23):13536–13540. [PubMed] [Google Scholar]
  8. Hiltunen J. K., Wenzel B., Beyer A., Erdmann R., Fosså A., Kunau W. H. Peroxisomal multifunctional beta-oxidation protein of Saccharomyces cerevisiae. Molecular analysis of the fox2 gene and gene product. J Biol Chem. 1992 Apr 5;267(10):6646–6653. [PubMed] [Google Scholar]
  9. Ikegawa S., Goto T., Watanabe H., Goto J. Stereoisomeric inversion of (25R)- and (25S)-3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acids in rat liver peroxisome. Biol Pharm Bull. 1995 Jul;18(7):1027–1029. doi: 10.1248/bpb.18.1027. [DOI] [PubMed] [Google Scholar]
  10. Iqbal M. N., Patrick P. H., Elliott W. H. Bile acids. LXXXI. Synthesis and structural assignment of E/Z isomers of substituted methyl hydroxy-5 beta-cholest-24-en-26-oates. Steroids. 1991 Oct;56(10):505–512. doi: 10.1016/0039-128x(91)90115-c. [DOI] [PubMed] [Google Scholar]
  11. Kobayashi N., Hagiwara C., Morisaki M., Yuri M., Oya I., Fujimoto Y. Non-stereoselective formation of 3 alpha,7 alpha,12 alpha,24-tetrahydroxy-5 beta-cholestan-26-oic acid during cholic acid biosynthesis. Chem Pharm Bull (Tokyo) 1994 May;42(5):1028–1035. doi: 10.1248/cpb.42.1028. [DOI] [PubMed] [Google Scholar]
  12. Kurosawa T., Sato M., Nakano H., Tohma M. Synthesis of diastereomers of 3 alpha,7 alpha,12 alpha, 24-tetrahydroxy- and 3 alpha,7 alpha,24-trihydroxy-5 beta-cholestan- 26-oic acids and their structures. Steroids. 1996 Jul;61(7):421–428. doi: 10.1016/0039-128x(96)00062-1. [DOI] [PubMed] [Google Scholar]
  13. Li J. X., Smeland T. E., Schulz H. D-3-hydroxyacyl coenzyme A dehydratase from rat liver peroxisomes. Purification and characterization of a novel enzyme necessary for the epimerization of 3-hydroxyacyl-CoA thioesters. J Biol Chem. 1990 Aug 15;265(23):13629–13634. [PubMed] [Google Scholar]
  14. Malila L. H., Siivari K. M., Mäkelä M. J., Jalonen J. E., Latipä P. M., Kunau W. H., Hiltunen J. K. Enzymes converting D-3-hydroxyacyl-CoA to trans-2-enoyl-CoA. Microsomal and peroxisomal isoenzymes in rat liver. J Biol Chem. 1993 Oct 15;268(29):21578–21585. [PubMed] [Google Scholar]
  15. Mao L. F., Chu C., Luo M. J., Simon A., Abbas A. S., Schulz H. Mitochondrial beta-oxidation of 2-methyl fatty acids in rat liver. Arch Biochem Biophys. 1995 Aug 1;321(1):221–228. doi: 10.1006/abbi.1995.1389. [DOI] [PubMed] [Google Scholar]
  16. Miyazawa S., Osumi T., Hashimoto T. The presence of a new 3-oxoacyl-CoA thiolase in rat liver peroxisomes. Eur J Biochem. 1980 Feb;103(3):589–596. doi: 10.1111/j.1432-1033.1980.tb05984.x. [DOI] [PubMed] [Google Scholar]
  17. Mohrig J. R., Moerke K. A., Cloutier D. L., Lane B. D., Person E. C., Onasch T. B. Importance of historical contingency in the stereochemistry of hydratase-dehydratase enzymes. Science. 1995 Jul 28;269(5223):527–529. doi: 10.1126/science.7624773. [DOI] [PubMed] [Google Scholar]
  18. Novikov D. K., Vanhove G. F., Carchon H., Asselberghs S., Eyssen H. J., Van Veldhoven P. P., Mannaerts G. P. Peroxisomal beta-oxidation. Purification of four novel 3-hydroxyacyl-CoA dehydrogenases from rat liver peroxisomes. J Biol Chem. 1994 Oct 28;269(43):27125–27135. [PubMed] [Google Scholar]
  19. Ostlund Farrants A. K., Björkhem I., Pedersen J. I. Identification of 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholest-24-enoic acid as an intermediate in the peroxisomal conversion of 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid to cholic acid. Biochim Biophys Acta. 1989 Apr 3;1002(2):198–202. doi: 10.1016/0005-2760(89)90287-7. [DOI] [PubMed] [Google Scholar]
  20. Osumi T., Hashimoto T. Peroxisomal beta oxidation system of rat liver. Copurification of enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase. Biochem Biophys Res Commun. 1979 Jul 27;89(2):580–584. doi: 10.1016/0006-291x(79)90669-7. [DOI] [PubMed] [Google Scholar]
  21. Pedersen J. I. Peroxisomal oxidation of the steroid side chain in bile acid formation. Biochimie. 1993;75(3-4):159–165. doi: 10.1016/0300-9084(93)90073-2. [DOI] [PubMed] [Google Scholar]
  22. Qin Y. M., Poutanen M. H., Helander H. M., Kvist A. P., Siivari K. M., Schmitz W., Conzelmann E., Hellman U., Hiltunen J. K. Peroxisomal multifunctional enzyme of beta-oxidation metabolizing D-3-hydroxyacyl-CoA esters in rat liver: molecular cloning, expression and characterization. Biochem J. 1997 Jan 1;321(Pt 1):21–28. doi: 10.1042/bj3210021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reddy J. K., Mannaerts G. P. Peroxisomal lipid metabolism. Annu Rev Nutr. 1994;14:343–370. doi: 10.1146/annurev.nu.14.070194.002015. [DOI] [PubMed] [Google Scholar]
  24. Schepers L., Van Veldhoven P. P., Casteels M., Eyssen H. J., Mannaerts G. P. Presence of three acyl-CoA oxidases in rat liver peroxisomes. An inducible fatty acyl-CoA oxidase, a noninducible fatty acyl-CoA oxidase, and a noninducible trihydroxycoprostanoyl-CoA oxidase. J Biol Chem. 1990 Mar 25;265(9):5242–5246. [PubMed] [Google Scholar]
  25. Schepers L., van Veldhoven P. P., Eyssen H. J., Mannaerts G. P. Separate peroxisomal oxidases for long-chain acyl-CoA and trihydroxycoprostanoyl-CoA. Biochem Soc Trans. 1989 Dec;17(6):1076–1076. doi: 10.1042/bst0171076. [DOI] [PubMed] [Google Scholar]
  26. Schmitz W., Albers C., Fingerhut R., Conzelmann E. Purification and characterization of an alpha-methylacyl-CoA racemase from human liver. Eur J Biochem. 1995 Aug 1;231(3):815–822. doi: 10.1111/j.1432-1033.1995.tb20766.x. [DOI] [PubMed] [Google Scholar]
  27. Schmitz W., Fingerhut R., Conzelmann E. Purification and properties of an alpha-methylacyl-CoA racemase from rat liver. Eur J Biochem. 1994 Jun 1;222(2):313–323. doi: 10.1111/j.1432-1033.1994.tb18870.x. [DOI] [PubMed] [Google Scholar]
  28. Schulz H. Inhibitors of fatty acid oxidation. Life Sci. 1987 Apr 13;40(15):1443–1449. doi: 10.1016/0024-3205(87)90375-4. [DOI] [PubMed] [Google Scholar]
  29. Schulz H. Long chain enoyl coenzyme A hydratase from pig heart. J Biol Chem. 1974 May 10;249(9):2704–2709. [PubMed] [Google Scholar]
  30. Seedorf U., Brysch P., Engel T., Schrage K., Assmann G. Sterol carrier protein X is peroxisomal 3-oxoacyl coenzyme A thiolase with intrinsic sterol carrier and lipid transfer activity. J Biol Chem. 1994 Aug 19;269(33):21277–21283. [PubMed] [Google Scholar]
  31. Une M., Izumi N., Hoshita T. Stereochemistry of intermediates in the conversion of 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid to cholic acid by rat liver peroxisomes. J Biochem. 1993 Feb;113(2):141–143. doi: 10.1093/oxfordjournals.jbchem.a124017. [DOI] [PubMed] [Google Scholar]
  32. Une M., Morigami I., Kihira K., Hoshita T. Stereospecific formation of (24E)-3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholest-24-en-26-oic acid and (24R,25S)-3 alpha,7 alpha,12 alpha,24-tetrahydroxy-5 beta-cholestan-26-oic acid from either (25R)- or (25S)-3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestan-26-oic acid by rat liver homogenate. J Biochem. 1984 Oct;96(4):1103–1107. doi: 10.1093/oxfordjournals.jbchem.a134927. [DOI] [PubMed] [Google Scholar]
  33. Une M., Nagai F., Kihira K., Kuramoto T., Hoshita T. Synthesis of four diastereoisomers at carbons 24 and 25 of 3 alpha,7 alpha,12 alpha,24-tetrahydroxy-5 beta-cholestan-26-oic acid, intermediates of bile acid biosynthesis. J Lipid Res. 1983 Jul;24(7):924–929. [PubMed] [Google Scholar]
  34. Van Veldhoven P. P., Van Rompuy P., Vanhooren J. C., Mannaerts G. P. Purification and further characterization of peroxisomal trihydroxycoprostanoyl-CoA oxidase from rat liver. Biochem J. 1994 Nov 15;304(Pt 1):195–200. doi: 10.1042/bj3040195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Van Veldhoven P. P., Vanhove G., Assselberghs S., Eyssen H. J., Mannaerts G. P. Substrate specificities of rat liver peroxisomal acyl-CoA oxidases: palmitoyl-CoA oxidase (inducible acyl-CoA oxidase), pristanoyl-CoA oxidase (non-inducible acyl-CoA oxidase), and trihydroxycoprostanoyl-CoA oxidase. J Biol Chem. 1992 Oct 5;267(28):20065–20074. [PubMed] [Google Scholar]
  36. Watkins P. A., Chen W. W., Harris C. J., Hoefler G., Hoefler S., Blake D. C., Jr, Balfe A., Kelley R. I., Moser A. B., Beard M. E. Peroxisomal bifunctional enzyme deficiency. J Clin Invest. 1989 Mar;83(3):771–777. doi: 10.1172/JCI113956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Xu R., Cuebas D. A. The reactions catalyzed by the inducible bifunctional enzyme of rat liver peroxisomes cannot lead to the formation of bile acids. Biochem Biophys Res Commun. 1996 Apr 16;221(2):271–278. doi: 10.1006/bbrc.1996.0585. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES