Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Dec 1;328(Pt 2):393–399. doi: 10.1042/bj3280393

The 3'-untranslated region of the mouse cholesterol 7alpha-hydroxylase mRNA contains elements responsive to post-transcriptional regulation by bile acids.

L B Agellon 1, S K Cheema 1
PMCID: PMC1218933  PMID: 9371693

Abstract

To investigate the importance of the 3'-untranslated region (UTR) of the mouse cholesterol 7alpha-hydroxylase (cyp7) mRNA in post-transcriptional regulation of expression of the cyp7 gene, chimaeric genes encoding mRNA containing the structural sequence of chloramphenicol acetyltransferase (CAT) linked to either the 3'-UTR of the mouse cyp7 mRNA or the SV40 early gene mRNA were constructed. The human cytomegalovirus (CMV) promoter was used to drive the expression of all the chimaeric genes. Thus the transgenes had identical sequences in the promoter, the regions encoding the 5'-UTR and translated sequence but differed in the region encoding the 3'-UTR of their respective mRNA species. The transgene containing the entire cyp7 3'-UTR (designated CMV.CAT.CYP7) gave rise to CAT activity in transfected hepatoma cells that was one-quarter of that obtained in cells transfected with the transgene containing the SV40 3'-UTR (designated CMV.CAT.SV40). The 3'-UTR of the cyp7 mRNA contains sequences resembling AU-rich elements (AREs). Deleting eight of nine putative AREs from the CYP7 3'-UTR sequence increased the CAT activity to a level greater than that observed for CMV.CAT. SV40, whereas deletion of the intron region had no effect. These results show that the AREs of the 3'-UTR of the cyp7 mRNA decrease transgene expression. Bile acids are known to repress the expression of the cyp7 gene. To test whether the 3'-UTR of the cyp7 mRNA has a role in this process, the expression of the chimaeric genes was evaluated in hepatoma cells competent for bile acid uptake. Conjugated bile acids, but not unconjugated bile acids, further decreased the expression of the CMV.CAT.CYP7 transgene. The same bile acids had no effect on the expression of the CMV.CAT.SV40 transgene. Deletion of the intron from the cyp7 sequence did not alter the CAT activity compared with the parental plasmid, and also did not alter the sensitivity of the transgene to the conjugated bile acids. Deletion of the AREs from the cyp7 3'-UTR, which increased the expression of the transgene, did not abolish the sensitivity of the transgene to repression by conjugated bile acids. Thus the 3'-UTR of the mouse cyp7 mRNA also contains elements that facilitate the further repression of transgene expression in the presence of conjugated bile acids. The results indicate that the 3'-UTR of the mouse cyp7 mRNA contains information specifying regulation at the post-transcriptional level.

Full Text

The Full Text of this article is available as a PDF (553.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beelman C. A., Parker R. Degradation of mRNA in eukaryotes. Cell. 1995 Apr 21;81(2):179–183. doi: 10.1016/0092-8674(95)90326-7. [DOI] [PubMed] [Google Scholar]
  2. Boyer J. L., Ng O. C., Ananthanarayanan M., Hofmann A. F., Schteingart C. D., Hagenbuch B., Stieger B., Meier P. J. Expression and characterization of a functional rat liver Na+ bile acid cotransport system in COS-7 cells. Am J Physiol. 1994 Mar;266(3 Pt 1):G382–G387. doi: 10.1152/ajpgi.1994.266.3.G382. [DOI] [PubMed] [Google Scholar]
  3. Cohen J. C., Cali J. J., Jelinek D. F., Mehrabian M., Sparkes R. S., Lusis A. J., Russell D. W., Hobbs H. H. Cloning of the human cholesterol 7 alpha-hydroxylase gene (CYP7) and localization to chromosome 8q11-q12. Genomics. 1992 Sep;14(1):153–161. doi: 10.1016/s0888-7543(05)80298-8. [DOI] [PubMed] [Google Scholar]
  4. Crestani M., Galli G., Chiang J. Y. Genomic cloning, sequencing, and analysis of the hamster cholesterol 7 alpha-hydroxylase gene (CYP7). Arch Biochem Biophys. 1993 Nov 1;306(2):451–460. doi: 10.1006/abbi.1993.1537. [DOI] [PubMed] [Google Scholar]
  5. Davis R. A., Highsmith W. E., McNeal M. M., Schexnayder J. A., Kuan J. C. Bile acid synthesis by cultured hepatocytes. Inhibition by mevinolin, but not by bile acids. J Biol Chem. 1983 Apr 10;258(7):4079–4082. [PubMed] [Google Scholar]
  6. Davis R. A., Musso C. A., Malone-McNeal M., Lattier G. R., Hyde P. M., Archambault-Schexnayder J., Straka M. Examination of bile acid negative feedback regulation in rats. J Lipid Res. 1988 Feb;29(2):202–211. [PubMed] [Google Scholar]
  7. Dietschy J. M., Turley S. D., Spady D. K. Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J Lipid Res. 1993 Oct;34(10):1637–1659. [PubMed] [Google Scholar]
  8. Hagenbuch B., Meier P. J. Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J Clin Invest. 1994 Mar;93(3):1326–1331. doi: 10.1172/JCI117091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hagenbuch B., Stieger B., Foguet M., Lübbert H., Meier P. J. Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10629–10633. doi: 10.1073/pnas.88.23.10629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Horton J. D., Cuthbert J. A., Spady D. K. Regulation of hepatic 7 alpha-hydroxylase expression and response to dietary cholesterol in the rat and hamster. J Biol Chem. 1995 Mar 10;270(10):5381–5387. doi: 10.1074/jbc.270.10.5381. [DOI] [PubMed] [Google Scholar]
  11. Jelinek D. F., Andersson S., Slaughter C. A., Russell D. W. Cloning and regulation of cholesterol 7 alpha-hydroxylase, the rate-limiting enzyme in bile acid biosynthesis. J Biol Chem. 1990 May 15;265(14):8190–8197. [PMC free article] [PubMed] [Google Scholar]
  12. Jelinek D. F., Russell D. W. Structure of the rat gene encoding cholesterol 7 alpha-hydroxylase. Biochemistry. 1990 Aug 28;29(34):7781–7785. doi: 10.1021/bi00486a001. [DOI] [PubMed] [Google Scholar]
  13. Kruys V., Huez G. Translational control of cytokine expression by 3' UA-rich sequences. Biochimie. 1994;76(9):862–866. doi: 10.1016/0300-9084(94)90188-0. [DOI] [PubMed] [Google Scholar]
  14. Kruys V., Marinx O., Shaw G., Deschamps J., Huez G. Translational blockade imposed by cytokine-derived UA-rich sequences. Science. 1989 Aug 25;245(4920):852–855. doi: 10.1126/science.2672333. [DOI] [PubMed] [Google Scholar]
  15. Kwekkeboom J., Princen H. M., van Voorthuizen E. M., Kempen H. J. Bile acids exert negative feedback control on bile acid synthesis in cultured pig hepatocytes by suppression of cholesterol 7 alpha-hydroxylase activity. Hepatology. 1990 Nov;12(5):1209–1215. doi: 10.1002/hep.1840120522. [DOI] [PubMed] [Google Scholar]
  16. Li Y. C., Wang D. P., Chiang J. Y. Regulation of cholesterol 7 alpha-hydroxylase in the liver. Cloning, sequencing, and regulation of cholesterol 7 alpha-hydroxylase mRNA. J Biol Chem. 1990 Jul 15;265(20):12012–12019. [PubMed] [Google Scholar]
  17. Liang D., Hagenbuch B., Stieger B., Meier P. J. Parallel decrease of Na(+)-taurocholate cotransport and its encoding mRNA in primary cultures of rat hepatocytes. Hepatology. 1993 Nov;18(5):1162–1166. [PubMed] [Google Scholar]
  18. Nishimoto M., Noshiro M., Okuda K. Structure of the gene encoding human liver cholesterol 7 alpha-hydroxylase. Biochim Biophys Acta. 1993 Feb 20;1172(1-2):147–150. doi: 10.1016/0167-4781(93)90281-h. [DOI] [PubMed] [Google Scholar]
  19. Noshiro M., Nishimoto M., Okuda K. Rat liver cholesterol 7 alpha-hydroxylase. Pretranslational regulation for circadian rhythm. J Biol Chem. 1990 Jun 15;265(17):10036–10041. [PubMed] [Google Scholar]
  20. Noshiro M., Okuda K. Molecular cloning and sequence analysis of cDNA encoding human cholesterol 7 alpha-hydroxylase. FEBS Lett. 1990 Jul 30;268(1):137–140. doi: 10.1016/0014-5793(90)80992-r. [DOI] [PubMed] [Google Scholar]
  21. Pandak W. M., Heuman D. M., Hylemon P. B., Chiang J. Y., Vlahcevic Z. R. Failure of intravenous infusion of taurocholate to down-regulate cholesterol 7 alpha-hydroxylase in rats with biliary fistulas. Gastroenterology. 1995 Feb;108(2):533–544. doi: 10.1016/0016-5085(95)90083-7. [DOI] [PubMed] [Google Scholar]
  22. Pandak W. M., Stravitz R. T., Lucas V., Heuman D. M., Chiang J. Y. Hep G2 cells: a model for studies on regulation of human cholesterol 7alpha-hydroxylase at the molecular level. Am J Physiol. 1996 Mar;270(3 Pt 1):G401–G410. doi: 10.1152/ajpgi.1996.270.3.G401. [DOI] [PubMed] [Google Scholar]
  23. Pandak W. M., Vlahcevic Z. R., Heuman D. M., Redford K. S., Chiang J. Y., Hylemon P. B. Effects of different bile salts on steady-state mRNA levels and transcriptional activity of cholesterol 7 alpha-hydroxylase. Hepatology. 1994 Apr;19(4):941–947. [PubMed] [Google Scholar]
  24. Ramirez M. I., Karaoglu D., Haro D., Barillas C., Bashirzadeh R., Gil G. Cholesterol and bile acids regulate cholesterol 7 alpha-hydroxylase expression at the transcriptional level in culture and in transgenic mice. Mol Cell Biol. 1994 Apr;14(4):2809–2821. doi: 10.1128/mcb.14.4.2809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rudel L., Deckelman C., Wilson M., Scobey M., Anderson R. Dietary cholesterol and downregulation of cholesterol 7 alpha-hydroxylase and cholesterol absorption in African green monkeys. J Clin Invest. 1994 Jun;93(6):2463–2472. doi: 10.1172/JCI117255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Russell D. W., Setchell K. D. Bile acid biosynthesis. Biochemistry. 1992 May 26;31(20):4737–4749. doi: 10.1021/bi00135a001. [DOI] [PubMed] [Google Scholar]
  27. Savant-Bhonsale S., Cleveland D. W. Evidence for instability of mRNAs containing AUUUA motifs mediated through translation-dependent assembly of a > 20S degradation complex. Genes Dev. 1992 Oct;6(10):1927–1939. doi: 10.1101/gad.6.10.1927. [DOI] [PubMed] [Google Scholar]
  28. Shaw G., Kamen R. A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell. 1986 Aug 29;46(5):659–667. doi: 10.1016/0092-8674(86)90341-7. [DOI] [PubMed] [Google Scholar]
  29. Shefer S., Nguyen L. B., Salen G., Ness G. C., Chowdhary I. R., Lerner S., Batta A. K., Tint G. S. Differing effects of cholesterol and taurocholate on steady state hepatic HMG-CoA reductase and cholesterol 7 alpha-hydroxylase activities and mRNA levels in the rat. J Lipid Res. 1992 Aug;33(8):1193–1200. [PubMed] [Google Scholar]
  30. Spady D. K., Cuthbert J. A. Regulation of hepatic sterol metabolism in the rat. Parallel regulation of activity and mRNA for 7 alpha-hydroxylase but not 3-hydroxy-3-methylglutaryl-coenzyme A reductase or low density lipoprotein receptor. J Biol Chem. 1992 Mar 15;267(8):5584–5591. [PubMed] [Google Scholar]
  31. Stravitz R. T., Hylemon P. B., Heuman D. M., Hagey L. R., Schteingart C. D., Ton-Nu H. T., Hofmann A. F., Vlahcevic Z. R. Transcriptional regulation of cholesterol 7 alpha-hydroxylase mRNA by conjugated bile acids in primary cultures of rat hepatocytes. J Biol Chem. 1993 Jul 5;268(19):13987–13993. [PubMed] [Google Scholar]
  32. Sundseth S. S., Waxman D. J. Hepatic P-450 cholesterol 7 alpha-hydroxylase. Regulation in vivo at the protein and mRNA level in response to mevalonate, diurnal rhythm, and bile acid feedback. J Biol Chem. 1990 Sep 5;265(25):15090–15095. [PubMed] [Google Scholar]
  33. Taniguchi T., Chen J., Cooper A. D. Regulation of cholesterol 7 alpha-hydroxylase gene expression in Hep-G2 cells. Effect of serum, bile salts, and coordinate and noncoordinate regulation with other sterol-responsive genes. J Biol Chem. 1994 Apr 1;269(13):10071–10078. [PubMed] [Google Scholar]
  34. Torchia E. C., Cheema S. K., Agellon L. B. Coordinate regulation of bile acid biosynthetic and recovery pathways. Biochem Biophys Res Commun. 1996 Aug 5;225(1):128–133. doi: 10.1006/bbrc.1996.1141. [DOI] [PubMed] [Google Scholar]
  35. Torchia E. C., Shapiro R. J., Agellon L. B. Reconstitution of bile acid transport in the rat hepatoma McArdle RH-7777 cell line. Hepatology. 1996 Jul;24(1):206–211. doi: 10.1002/hep.510240133. [DOI] [PubMed] [Google Scholar]
  36. Trawick J. D., Lewis K. D., Dueland S., Moore G. L., Simon F. R., Davis R. A. Rat hepatoma L35 cells, a liver-differentiated cell line, display resistance to bile acid repression of cholesterol 7 alpha-hydroxylase. J Lipid Res. 1996 Mar;37(3):588–598. [PubMed] [Google Scholar]
  37. Twisk J., Lehmann E. M., Princen H. M. Differential feedback regulation of cholesterol 7 alpha-hydroxylase mRNA and transcriptional activity by rat bile acids in primary monolayer cultures of rat hepatocytes. Biochem J. 1993 Mar 15;290(Pt 3):685–691. doi: 10.1042/bj2900685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tzung K. W., Ishimura-Oka K., Kihara S., Oka K., Chan L. Structure of the mouse cholesterol 7 alpha-hydroxylase gene. Genomics. 1994 May 1;21(1):244–247. doi: 10.1006/geno.1994.1250. [DOI] [PubMed] [Google Scholar]
  39. Wang D. P., Chiang J. Y. Structure and nucleotide sequences of the human cholesterol 7 alpha-hydroxylase gene (CYP7). Genomics. 1994 Mar 15;20(2):320–323. doi: 10.1006/geno.1994.1177. [DOI] [PubMed] [Google Scholar]
  40. Xu G., Salen G., Shefer S., Ness G. C., Nguyen L. B., Parker T. S., Chen T. S., Zhao Z., Donnelly T. M., Tint G. S. Unexpected inhibition of cholesterol 7 alpha-hydroxylase by cholesterol in New Zealand white and Watanabe heritable hyperlipidemic rabbits. J Clin Invest. 1995 Apr;95(4):1497–1504. doi: 10.1172/JCI117821. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES