Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Dec 1;328(Pt 2):409–414. doi: 10.1042/bj3280409

Reconstitution of native-like nucleosome core particles from reversed-phase-HPLC-fractionated histones.

S C Moore 1, P Rice 1, M Iskandar 1, J Ausió 1
PMCID: PMC1218935  PMID: 9371695

Abstract

We have reconstituted nucleosome core particles from reversed-phase-HPLC-purified chicken erythrocyte core histones and 145 bp random-sequence DNA fragments. Characterization of the resulting nucleoprotein complexes by sedimentation velocity, CD and DNase I footprinting showed that they are structurally indistinguishable from native nucleosome core particles. Furthermore, we have shown that the ability to reproduce these native-like structural features in these reconstituted nucleosome core particles is basically independent of the biological source or the method used (i.e. salt versus acid) for the extraction of histones before their HPLC fractionation. The usefulness and relevance of this approach for the reconstitution of native-like chromatin structures from histone types (histone variants/post-translationally modified histones), which are usually available only in relatively small amounts, is discussed.

Full Text

The Full Text of this article is available as a PDF (550.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ausio J., Dong F., van Holde K. E. Use of selectively trypsinized nucleosome core particles to analyze the role of the histone "tails" in the stabilization of the nucleosome. J Mol Biol. 1989 Apr 5;206(3):451–463. doi: 10.1016/0022-2836(89)90493-2. [DOI] [PubMed] [Google Scholar]
  2. Ausio J., Seger D., Eisenberg H. Nucleosome core particle stability and conformational change. Effect of temperature, particle and NaCl concentrations, and crosslinking of histone H3 sulfhydryl groups. J Mol Biol. 1984 Jun 15;176(1):77–104. doi: 10.1016/0022-2836(84)90383-8. [DOI] [PubMed] [Google Scholar]
  3. Ausio J., van Holde K. E. Histone hyperacetylation: its effects on nucleosome conformation and stability. Biochemistry. 1986 Mar 25;25(6):1421–1428. doi: 10.1021/bi00354a035. [DOI] [PubMed] [Google Scholar]
  4. Beaudette N. V., Fulmer A. W., Okabayashi H., Fasman G. D. Study of conformational states and reversibility of histone complexes. Biochemistry. 1981 Nov 10;20(23):6526–6535. doi: 10.1021/bi00526a003. [DOI] [PubMed] [Google Scholar]
  5. Bradbury E. M., Cary P. D., Chapman G. E., Crane-Robinson C., Danby S. E., Rattle H. W., Boublik M., Palau J., Aviles F. J. Studies on the role and mode of operation of the very-lysine-rich histone H1 (F1) in eukaryote chromatin. The conformation of histone H1. Eur J Biochem. 1975 Apr 1;52(3):605–613. doi: 10.1111/j.1432-1033.1975.tb04032.x. [DOI] [PubMed] [Google Scholar]
  6. Certa U., von Ehrenstein G. Reversed-phase high-performance liquid chromatography of histones. Anal Biochem. 1981 Nov 15;118(1):147–154. doi: 10.1016/0003-2697(81)90171-8. [DOI] [PubMed] [Google Scholar]
  7. Chung S. Y., Hill W. E., Doty P. Characterization of the histone core complex. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1680–1684. doi: 10.1073/pnas.75.4.1680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dong F., Nelson C., Ausio J. Analysis of the changes in the structure and hydration of the nucleosome core particle at moderate ionic strengths. Biochemistry. 1990 Nov 27;29(47):10710–10716. doi: 10.1021/bi00499a020. [DOI] [PubMed] [Google Scholar]
  9. Garcia-Ramirez M., Dong F., Ausio J. Role of the histone "tails" in the folding of oligonucleosomes depleted of histone H1. J Biol Chem. 1992 Sep 25;267(27):19587–19595. [PubMed] [Google Scholar]
  10. Gurley L. R., Prentice D. A., Valdez J. G., Spall W. D. High-performance liquid chromatography of chromatin histones. J Chromatogr. 1983 Aug 26;266:609–627. doi: 10.1016/s0021-9673(01)90931-8. [DOI] [PubMed] [Google Scholar]
  11. Gurley L. R., Prentice D. A., Valdez J. G., Spall W. D. Histone fractionation by high-performance liquid chromatography on cyanoalkysilane (CN) reverse-phase columns. Anal Biochem. 1983 Jun;131(2):465–477. doi: 10.1016/0003-2697(83)90200-2. [DOI] [PubMed] [Google Scholar]
  12. Gurley L. R., Valdez J. G., Prentice D. A., Spall W. D. Histone fractionation by high-performance liquid chromatography. Anal Biochem. 1983 Feb 15;129(1):132–144. doi: 10.1016/0003-2697(83)90061-1. [DOI] [PubMed] [Google Scholar]
  13. Hallenbeck P. C., Mueller R. D. Separation of histones from Physarum polycephalum by ion-paired, reverse-phase high-performance liquid chromatography. Anal Biochem. 1984 Apr;138(1):189–195. doi: 10.1016/0003-2697(84)90787-5. [DOI] [PubMed] [Google Scholar]
  14. Hansen J. C., Ausio J., Stanik V. H., van Holde K. E. Homogeneous reconstituted oligonucleosomes, evidence for salt-dependent folding in the absence of histone H1. Biochemistry. 1989 Nov 14;28(23):9129–9136. doi: 10.1021/bi00449a026. [DOI] [PubMed] [Google Scholar]
  15. Helliger W., Lindner H., Hauptlorenz S., Puschendorf B. A new h.p.l.c. isolation procedure for chicken and goose erythrocyte histones. Biochem J. 1988 Oct 1;255(1):23–27. doi: 10.1042/bj2550023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hunt J. G., Kasinsky H. E., Elsey R. M., Wright C. L., Rice P., Bell J. E., Sharp D. J., Kiss A. J., Hunt D. F., Arnott D. P. Protamines of reptiles. J Biol Chem. 1996 Sep 20;271(38):23547–23557. doi: 10.1074/jbc.271.38.23547. [DOI] [PubMed] [Google Scholar]
  17. Kawashima S., Imahori K. Studies on histone oligomers. V. Reconstitution of chromatin from purified DNA and acid-extracted histones. J Biochem. 1983 Dec;94(6):1781–1787. doi: 10.1093/oxfordjournals.jbchem.a134529. [DOI] [PubMed] [Google Scholar]
  18. Kniep E. M., Kniep B., Grote W., Conradt H. S., Monner D. A., Mühlradt P. F. Purification of the T lymphocyte growth factor interleukin-2 from culture media of human peripheral blood leukocytes (buffy coats). Eur J Biochem. 1984 Aug 15;143(1):199–203. doi: 10.1111/j.1432-1033.1984.tb08359.x. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lindner H., Helliger W., Puschendorf B. Histone separation by high-performance liquid chromatography on C4 reverse-phase columns. Anal Biochem. 1986 Nov 1;158(2):424–430. doi: 10.1016/0003-2697(86)90570-1. [DOI] [PubMed] [Google Scholar]
  21. Lindsey G. G., Thompson P., Pretorius L., Purves L. R., von Holt C. Octamer reconstitution from acid-extracted chicken erythrocyte histones. FEBS Lett. 1983 May 8;155(2):301–305. doi: 10.1016/0014-5793(82)80625-x. [DOI] [PubMed] [Google Scholar]
  22. Lutter L. C. Kinetic analysis of deoxyribonuclease I cleavages in the nucleosome core: evidence for a DNA superhelix. J Mol Biol. 1978 Sep 15;124(2):391–420. doi: 10.1016/0022-2836(78)90306-6. [DOI] [PubMed] [Google Scholar]
  23. Marvin K. W., Yau P., Bradbury E. M. Isolation and characterization of acetylated histones H3 and H4 and their assembly into nucleosomes. J Biol Chem. 1990 Nov 15;265(32):19839–19847. [PubMed] [Google Scholar]
  24. McCroskey M. C., Groppi V. E., Pearson J. D. Separation and purification of S49 mouse lymphoma histones by reversed-phase high-performance liquid chromatography. Anal Biochem. 1987 Jun;163(2):427–432. doi: 10.1016/0003-2697(87)90244-2. [DOI] [PubMed] [Google Scholar]
  25. Philip M., Jamaluddin M., Sastry R. V., Chandra H. S. Nucleosome core histone complex isolated gently and rapidly in 2 M NaCl is octameric. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5178–5182. doi: 10.1073/pnas.76.10.5178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Prevelige P. E., Jr, Fasman G. D. Structural studies of acetylated and control inner core histones. Biochemistry. 1987 May 19;26(10):2944–2955. doi: 10.1021/bi00384a041. [DOI] [PubMed] [Google Scholar]
  27. Saperas N., Chiva M., Pfeiffer D. C., Kasinsky H. E., Ausió J. Sperm nuclear basic proteins (SNBPs) of agnathans and chondrichthyans: variability and evolution of sperm proteins in fish. J Mol Evol. 1997 Apr;44(4):422–431. doi: 10.1007/pl00006162. [DOI] [PubMed] [Google Scholar]
  28. Simon R. H., Felsenfeld G. A new procedure for purifying histone pairs H2A + H2B and H3 + H4 from chromatin using hydroxylapatite. Nucleic Acids Res. 1979 Feb;6(2):689–696. doi: 10.1093/nar/6.2.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stein A. DNA folding by histones: the kinetics of chromatin core particle reassembly and the interaction of nucleosomes with histones. J Mol Biol. 1979 May 15;130(2):103–134. doi: 10.1016/0022-2836(79)90421-2. [DOI] [PubMed] [Google Scholar]
  30. Studitsky V. M., Clark D. J., Felsenfeld G. Preparation of nucleosomal templates for transcription in vitro. Methods Enzymol. 1996;274:246–256. doi: 10.1016/s0076-6879(96)74021-1. [DOI] [PubMed] [Google Scholar]
  31. Tatchell K., Van Holde K. E. Reconstitution of chromatin core particles. Biochemistry. 1977 Nov 29;16(24):5295–5303. doi: 10.1021/bi00643a021. [DOI] [PubMed] [Google Scholar]
  32. Thomas J. O., Butler P. J. Characterization of the octamer of histones free in solution. J Mol Biol. 1977 Nov;116(4):769–781. doi: 10.1016/0022-2836(77)90270-4. [DOI] [PubMed] [Google Scholar]
  33. Ura K., Wolffe A. P. Reconstruction of transcriptionally active and silent chromatin. Methods Enzymol. 1996;274:257–271. doi: 10.1016/s0076-6879(96)74022-3. [DOI] [PubMed] [Google Scholar]
  34. Utley R. T., Owen-Hughes T. A., Juan L. J., Côté J., Adams C. C., Workman J. L. In vitro analysis of transcription factor binding to nucleosomes and nucleosome disruption/displacement. Methods Enzymol. 1996;274:276–291. doi: 10.1016/s0076-6879(96)74024-7. [DOI] [PubMed] [Google Scholar]
  35. Voordouw G., Kalif D., Eisenberg H. Studies of ColE1-plasmid DNA and its interactions with histones: sedimentation velocity studies of monodisperse complexes reconstituted with calf-thymus histones. Nucleic Acids Res. 1977;4(5):1207–1223. doi: 10.1093/nar/4.5.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Weintraub H., Palter K., Van Lente F. Histones H2a, H2b, H3, and H4 form a tetrameric complex in solutions of high salt. Cell. 1975 Sep;6(1):85–110. doi: 10.1016/0092-8674(75)90077-x. [DOI] [PubMed] [Google Scholar]
  37. Wilks J. W., Butler S. S. Biologic activity of human chorionic gonadotropin following reversed-phase high-performance liquid chromatography. J Chromatogr. 1984 Aug 17;298(1):123–130. doi: 10.1016/s0021-9673(01)92700-1. [DOI] [PubMed] [Google Scholar]
  38. von Holt C., Brandt W. F. Fractionation of histones on molecular sieve matrices. Methods Cell Biol. 1977;16:205–225. doi: 10.1016/s0091-679x(08)60101-6. [DOI] [PubMed] [Google Scholar]
  39. von Holt C., Brandt W. F., Greyling H. J., Lindsey G. G., Retief J. D., Rodrigues J. D., Schwager S., Sewell B. T. Isolation and characterization of histones. Methods Enzymol. 1989;170:431–523. doi: 10.1016/0076-6879(89)70061-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES