Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Dec 1;328(Pt 2):525–528. doi: 10.1042/bj3280525

Intracellular calcium release is more efficient than calcium influx in stimulating mitochondrial NAD(P)H formation in adrenal glomerulosa cells.

T Rohács 1, K Tory 1, A Dobos 1, A Spät 1
PMCID: PMC1218951  PMID: 9371711

Abstract

We compared the effect on mitochondrial NAD(P)H formation of calcium release from intracellular stores with that of calcium influx from the extracellular space. Simultaneous measurements of cytoplasmic free calcium ion concentration and mitochondrial NAD(P)H were performed on fura-PE3-loaded single rat adrenal glomerulosa cells. The effects of equipotent stimuli in terms of the evoked Ca2+ response were compared. Angiotensin II (AII; 1 nM) induced a higher amplitude NAD(P)H response than K+ (5.6-7.6 mM). Vasopressin (1 microM) also induced a greater initial NAD(P)H formation than K+, although the Ca2+ signal evoked by the two agonists had similar amplitude. To examine the effect of Ca2+ release from internal stores we applied AII in Ca2+-free medium. We compared the effect on NAD(P)H formation of Ca2+ release with Ca2+ influx induced by K+, and with capacitative Ca2+ influx induced by AII. NAD(P)H formation in response to Ca2+ release was greater than that induced by Ca2+ influx, irrespective of whether induced by K+ or AII. Our results indicate that Ca2+, presumably released in the vicinity of mitochondria, activates mitochondrial dehydrogenases more efficiently than Ca2+ entering through the plasma membrane. These data confirm the biological significance of previous observations showing that Ca2+ released from inositol 1,4, 5-trisphosphate-sensitive internal stores increases mitochondrial matrix [Ca2+] to a greater extent than extracellular Ca2+.

Full Text

The Full Text of this article is available as a PDF (303.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balla T., Enyedi P., Spät A., Antoni F. A. Pressor-type vasopressin receptors in the adrenal cortex: properties of binding, effects on phosphoinositide metabolism and aldosterone secretion. Endocrinology. 1985 Jul;117(1):421–423. doi: 10.1210/endo-117-1-421. [DOI] [PubMed] [Google Scholar]
  2. Balla T., Hunyady L., Spät A. Possible role of calcium uptake and calmodulin in adrenal glomerulosa cells: effects of verapamil and trifluoperazine. Biochem Pharmacol. 1982 Apr 1;31(7):1267–1271. doi: 10.1016/0006-2952(82)90014-4. [DOI] [PubMed] [Google Scholar]
  3. Bootman M. D., Berridge M. J. The elemental principles of calcium signaling. Cell. 1995 Dec 1;83(5):675–678. doi: 10.1016/0092-8674(95)90179-5. [DOI] [PubMed] [Google Scholar]
  4. Brandenburger Y., Kennedy E. D., Python C. P., Rossier M. F., Vallotton M. B., Wollheim C. B., Capponi A. M. Possible role for mitochondrial calcium in angiotensin II- and potassium-stimulated steroidogenesis in bovine adrenal glomerulosa cells. Endocrinology. 1996 Dec;137(12):5544–5551. doi: 10.1210/endo.137.12.8940382. [DOI] [PubMed] [Google Scholar]
  5. Capponi A. M., Rossier M. F., Davies E., Vallotton M. B. Calcium stimulates steroidogenesis in permeabilized bovine adrenal cortical cells. J Biol Chem. 1988 Nov 5;263(31):16113–16117. [PubMed] [Google Scholar]
  6. Connor J. A., Cornwall M. C., Williams G. H. Spatially resolved cytosolic calcium response to angiotensin II and potassium in rat glomerulosa cells measured by digital imaging techniques. J Biol Chem. 1987 Feb 25;262(6):2919–2927. [PubMed] [Google Scholar]
  7. Gallo-Payet N., Chouinard L., Balestre M. N., Guillon G. Involvement of protein kinase C in the coupling between the V1 vasopressin receptor and phospholipase C in rat glomerulosa cells: effects on aldosterone secretion. Endocrinology. 1991 Aug;129(2):623–634. doi: 10.1210/endo-129-2-623. [DOI] [PubMed] [Google Scholar]
  8. Gallo-Payet N., Guillon G., Balestre M. N., Jard S. Vasopressin induces breakdown of membrane phosphoinositides in adrenal glomerulosa and fasciculata cells. Endocrinology. 1986 Sep;119(3):1042–1047. doi: 10.1210/endo-119-3-1042. [DOI] [PubMed] [Google Scholar]
  9. Ganguly A., Davis J. S. Role of calcium and other mediators in aldosterone secretion from the adrenal glomerulosa cells. Pharmacol Rev. 1994 Dec;46(4):417–447. [PubMed] [Google Scholar]
  10. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  11. Hajnóczky G., Robb-Gaspers L. D., Seitz M. B., Thomas A. P. Decoding of cytosolic calcium oscillations in the mitochondria. Cell. 1995 Aug 11;82(3):415–424. doi: 10.1016/0092-8674(95)90430-1. [DOI] [PubMed] [Google Scholar]
  12. Hall P. F. The roles of microfilaments and intermediate filaments in the regulation of steroid synthesis. J Steroid Biochem Mol Biol. 1995 Dec;55(5-6):601–605. doi: 10.1016/0960-0760(95)00211-1. [DOI] [PubMed] [Google Scholar]
  13. Hoek J. B., Rydström J. Physiological roles of nicotinamide nucleotide transhydrogenase. Biochem J. 1988 Aug 15;254(1):1–10. doi: 10.1042/bj2540001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kennedy E. D., Rizzuto R., Theler J. M., Pralong W. F., Bastianutto C., Pozzan T., Wollheim C. B. Glucose-stimulated insulin secretion correlates with changes in mitochondrial and cytosolic Ca2+ in aequorin-expressing INS-1 cells. J Clin Invest. 1996 Dec 1;98(11):2524–2538. doi: 10.1172/JCI119071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lukács G. L., Kapus A. Measurement of the matrix free Ca2+ concentration in heart mitochondria by entrapped fura-2 and quin2. Biochem J. 1987 Dec 1;248(2):609–613. doi: 10.1042/bj2480609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McCormack J. G., Halestrap A. P., Denton R. M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev. 1990 Apr;70(2):391–425. doi: 10.1152/physrev.1990.70.2.391. [DOI] [PubMed] [Google Scholar]
  17. Pozzan T., Rizzuto R., Volpe P., Meldolesi J. Molecular and cellular physiology of intracellular calcium stores. Physiol Rev. 1994 Jul;74(3):595–636. doi: 10.1152/physrev.1994.74.3.595. [DOI] [PubMed] [Google Scholar]
  18. Pralong W. F., Hunyady L., Várnai P., Wollheim C. B., Spät A. Pyridine nucleotide redox state parallels production of aldosterone in potassium-stimulated adrenal glomerulosa cells. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):132–136. doi: 10.1073/pnas.89.1.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pralong W. F., Spät A., Wollheim C. B. Dynamic pacing of cell metabolism by intracellular Ca2+ transients. J Biol Chem. 1994 Nov 4;269(44):27310–27314. [PubMed] [Google Scholar]
  20. Rizzuto R., Bastianutto C., Brini M., Murgia M., Pozzan T. Mitochondrial Ca2+ homeostasis in intact cells. J Cell Biol. 1994 Sep;126(5):1183–1194. doi: 10.1083/jcb.126.5.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rizzuto R., Brini M., Murgia M., Pozzan T. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science. 1993 Oct 29;262(5134):744–747. doi: 10.1126/science.8235595. [DOI] [PubMed] [Google Scholar]
  22. Rohács T., Nagy G., Spät A. Cytoplasmic Ca2+ signalling and reduction of mitochondrial pyridine nucleotides in adrenal glomerulosa cells in response to K+, angiotensin II and vasopressin. Biochem J. 1997 Mar 15;322(Pt 3):785–792. doi: 10.1042/bj3220785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Spät A., Balla I., Balla T., Cragoe E. J., Jr, Hajnóczky G., Hunyady L. Angiotensin II and potassium activate different calcium entry mechanisms in rat adrenal glomerulosa cells. J Endocrinol. 1989 Jul;122(1):361–370. doi: 10.1677/joe.0.1220361. [DOI] [PubMed] [Google Scholar]
  24. Spät A., Enyedi P., Hajnóczky G., Hunyady L. Generation and role of calcium signal in adrenal glomerulosa cells. Exp Physiol. 1991 Nov;76(6):859–885. doi: 10.1113/expphysiol.1991.sp003550. [DOI] [PubMed] [Google Scholar]
  25. Thorn P., Lawrie A. M., Smith P. M., Gallacher D. V., Petersen O. H. Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell. 1993 Aug 27;74(4):661–668. doi: 10.1016/0092-8674(93)90513-p. [DOI] [PubMed] [Google Scholar]
  26. Thorn P. Spatial domains of Ca2+ signaling in secretory epithelial cells. Cell Calcium. 1996 Aug;20(2):203–214. doi: 10.1016/s0143-4160(96)90107-4. [DOI] [PubMed] [Google Scholar]
  27. Vorndran C., Minta A., Poenie M. New fluorescent calcium indicators designed for cytosolic retention or measuring calcium near membranes. Biophys J. 1995 Nov;69(5):2112–2124. doi: 10.1016/S0006-3495(95)80082-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES