Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Dec 1;328(Pt 2):539–548. doi: 10.1042/bj3280539

Characterization of five different proteins produced by alternatively spliced mRNAs from the human cAMP-specific phosphodiesterase PDE4D gene.

G B Bolger 1, S Erdogan 1, R E Jones 1, K Loughney 1, G Scotland 1, R Hoffmann 1, I Wilkinson 1, C Farrell 1, M D Houslay 1
PMCID: PMC1218953  PMID: 9371713

Abstract

We have isolated and characterized complete cDNAs for two isoforms (HSPDE4D4 and HSPDE4A5) encoded by the human PDE4D gene, one of four genes that encode cAMP-specific rolipram-inhibited 3',5'-cyclic nucleotide phosphodiesterases (type IVPDEs; PDE4 family). The HSPDE4D4 and HSPDE4D5 cDNAs encode proteins of 810 and 746 amino acids respectively. A comparison of the nucleotide sequences of these two cDNAs with those encoding the three other human PDE4D proteins (HSPDE4D1, HSPDE4D2 and HSPDE4D3) demonstrates that each corresponding mRNA transcript has a unique region of sequence at or near its 5'-end, consistent with alternative mRNA splicing. Transient expression of the five cDNAs in monkey COS-7 cells produced proteins of apparent molecular mass under denaturing conditions of 68, 68, 95, 119 and 105 kDa for isoforms HSPDE4D1-5 respectively. Immunoblotting of human cell lines and rat brain demonstrated the presence of species that co-migrated with the proteins produced in COS-7 cells. COS-cell-expressed and native HSPDE4D1 and HSPDE4D2 were found to exist only in the cytosol, whereas HSPDE4D3, HSPDE4D4 and HSPDE4D5 were found in both cytosolic and particulate fractions. The IC50 values for the selective PDE4 inhibitor rolipram for the cytosolic forms of the five enzymes were similar (0.05-0.14 microM), whereas they were 2-7-fold higher for the particulate forms of HSPDE4D3 and HSPDE4D5 (0.32 and 0.59 microM respectively), than for the corresponding cytosolic forms. Our data indicate that the N-terminal regions of the HSPDE4D3, HSPDE4D4 and HSPDE4D5 proteins, which are derived from alternatively spliced regions of their mRNAs, are important in determining their subcellular localization, activity and differential sensitivity to inhibitors.

Full Text

The Full Text of this article is available as a PDF (557.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez R., Sette C., Yang D., Eglen R. M., Wilhelm R., Shelton E. R., Conti M. Activation and selective inhibition of a cyclic AMP-specific phosphodiesterase, PDE-4D3. Mol Pharmacol. 1995 Oct;48(4):616–622. [PubMed] [Google Scholar]
  2. Baecker P. A., Obernolte R., Bach C., Yee C., Shelton E. R. Isolation of a cDNA encoding a human rolipram-sensitive cyclic AMP phosphodiesterase (PDE IVD). Gene. 1994 Jan 28;138(1-2):253–256. doi: 10.1016/0378-1119(94)90818-4. [DOI] [PubMed] [Google Scholar]
  3. Beavo J. A. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev. 1995 Oct;75(4):725–748. doi: 10.1152/physrev.1995.75.4.725. [DOI] [PubMed] [Google Scholar]
  4. Bolger G. B., McPhee I., Houslay M. D. Alternative splicing of cAMP-specific phosphodiesterase mRNA transcripts. Characterization of a novel tissue-specific isoform, RNPDE4A8. J Biol Chem. 1996 Jan 12;271(2):1065–1071. doi: 10.1074/jbc.271.2.1065. [DOI] [PubMed] [Google Scholar]
  5. Bolger G. B. Molecular biology of the cyclic AMP-specific cyclic nucleotide phosphodiesterases: a diverse family of regulatory enzymes. Cell Signal. 1994 Nov;6(8):851–859. doi: 10.1016/0898-6568(94)90018-3. [DOI] [PubMed] [Google Scholar]
  6. Bolger G. B., Rodgers L., Riggs M. Differential CNS expression of alternative mRNA isoforms of the mammalian genes encoding cAMP-specific phosphodiesterases. Gene. 1994 Nov 18;149(2):237–244. doi: 10.1016/0378-1119(94)90155-4. [DOI] [PubMed] [Google Scholar]
  7. Bolger G., Michaeli T., Martins T., St John T., Steiner B., Rodgers L., Riggs M., Wigler M., Ferguson K. A family of human phosphodiesterases homologous to the dunce learning and memory gene product of Drosophila melanogaster are potential targets for antidepressant drugs. Mol Cell Biol. 1993 Oct;13(10):6558–6571. doi: 10.1128/mcb.13.10.6558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  9. Conti M., Nemoz G., Sette C., Vicini E. Recent progress in understanding the hormonal regulation of phosphodiesterases. Endocr Rev. 1995 Jun;16(3):370–389. doi: 10.1210/edrv-16-3-370. [DOI] [PubMed] [Google Scholar]
  10. Davis R. L. Mushroom bodies and Drosophila learning. Neuron. 1993 Jul;11(1):1–14. doi: 10.1016/0896-6273(93)90266-t. [DOI] [PubMed] [Google Scholar]
  11. Erdogan S., Houslay M. D. Challenge of human Jurkat T-cells with the adenylate cyclase activator forskolin elicits major changes in cAMP phosphodiesterase (PDE) expression by up-regulating PDE3 and inducing PDE4D1 and PDE4D2 splice variants as well as down-regulating a novel PDE4A splice variant. Biochem J. 1997 Jan 1;321(Pt 1):165–175. doi: 10.1042/bj3210165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Feng D. F., Doolittle R. F. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol. 1987;25(4):351–360. doi: 10.1007/BF02603120. [DOI] [PubMed] [Google Scholar]
  13. Huston E., Pooley L., Julien P., Scotland G., McPhee I., Sullivan M., Bolger G., Houslay M. D. The human cyclic AMP-specific phosphodiesterase PDE-46 (HSPDE4A4B) expressed in transfected COS7 cells occurs as both particulate and cytosolic species that exhibit distinct kinetics of inhibition by the antidepressant rolipram. J Biol Chem. 1996 Dec 6;271(49):31334–31344. doi: 10.1074/jbc.271.49.31334. [DOI] [PubMed] [Google Scholar]
  14. Jin S. L., Swinnen J. V., Conti M. Characterization of the structure of a low Km, rolipram-sensitive cAMP phosphodiesterase. Mapping of the catalytic domain. J Biol Chem. 1992 Sep 15;267(26):18929–18939. [PubMed] [Google Scholar]
  15. Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kreis T. E. Microinjected antibodies against the cytoplasmic domain of vesicular stomatitis virus glycoprotein block its transport to the cell surface. EMBO J. 1986 May;5(5):931–941. doi: 10.1002/j.1460-2075.1986.tb04306.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Livi G. P., Kmetz P., McHale M. M., Cieslinski L. B., Sathe G. M., Taylor D. P., Davis R. L., Torphy T. J., Balcarek J. M. Cloning and expression of cDNA for a human low-Km, rolipram-sensitive cyclic AMP phosphodiesterase. Mol Cell Biol. 1990 Jun;10(6):2678–2686. doi: 10.1128/mcb.10.6.2678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lobban M., Shakur Y., Beattie J., Houslay M. D. Identification of two splice variant forms of type-IVB cyclic AMP phosphodiesterase, DPD (rPDE-IVB1) and PDE-4 (rPDE-IVB2) in brain: selective localization in membrane and cytosolic compartments and differential expression in various brain regions. Biochem J. 1994 Dec 1;304(Pt 2):399–406. doi: 10.1042/bj3040399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Loughney K., Martins T. J., Harris E. A., Sadhu K., Hicks J. B., Sonnenburg W. K., Beavo J. A., Ferguson K. Isolation and characterization of cDNAs corresponding to two human calcium, calmodulin-regulated, 3',5'-cyclic nucleotide phosphodiesterases. J Biol Chem. 1996 Jan 12;271(2):796–806. doi: 10.1074/jbc.271.2.796. [DOI] [PubMed] [Google Scholar]
  21. MacDonald R. J., Swift G. H., Przybyla A. E., Chirgwin J. M. Isolation of RNA using guanidinium salts. Methods Enzymol. 1987;152:219–227. doi: 10.1016/0076-6879(87)52023-7. [DOI] [PubMed] [Google Scholar]
  22. Marchmont R. J., Houslay M. D. A peripheral and an intrinsic enzyme constitute the cyclic AMP phosphodiesterase activity of rat liver plasma membranes. Biochem J. 1980 May 1;187(2):381–392. doi: 10.1042/bj1870381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McLaughlin M. M., Cieslinski L. B., Burman M., Torphy T. J., Livi G. P. A low-Km, rolipram-sensitive, cAMP-specific phosphodiesterase from human brain. Cloning and expression of cDNA, biochemical characterization of recombinant protein, and tissue distribution of mRNA. J Biol Chem. 1993 Mar 25;268(9):6470–6476. [PubMed] [Google Scholar]
  24. McPhee I., Pooley L., Lobban M., Bolger G., Houslay M. D. Identification, characterization and regional distribution in brain of RPDE-6 (RNPDE4A5), a novel splice variant of the PDE4A cyclic AMP phosphodiesterase family. Biochem J. 1995 Sep 15;310(Pt 3):965–974. doi: 10.1042/bj3100965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Monaco L., Vicini E., Conti M. Structure of two rat genes coding for closely related rolipram-sensitive cAMP phosphodiesterases. Multiple mRNA variants originate from alternative splicing and multiple start sites. J Biol Chem. 1994 Jan 7;269(1):347–357. [PubMed] [Google Scholar]
  26. Morena A. R., Boitani C., de Grossi S., Stefanini M., Conti M. Stage and cell-specific expression of the adenosine 3',5' monophosphate-phosphodiesterase genes in the rat seminiferous epithelium. Endocrinology. 1995 Feb;136(2):687–695. doi: 10.1210/endo.136.2.7835302. [DOI] [PubMed] [Google Scholar]
  27. Nemoz G., Sette C., Hess M., Muca C., Vallar L., Conti M. Activation of cyclic nucleotide phosphodiesterases in FRTL-5 thyroid cells expressing a constitutively active Gs alpha. Mol Endocrinol. 1995 Oct;9(10):1279–1287. doi: 10.1210/mend.9.10.8544836. [DOI] [PubMed] [Google Scholar]
  28. Nishikori M., Hansen H., Jhanwar S., Fried J., Sordillo P., Koziner B., Lloyd K., Clarkson B. Establishment of a near-tetraploid B-cell lymphoma line with duplication of the 8;14 translocation. Cancer Genet Cytogenet. 1984 May;12(1):39–50. doi: 10.1016/0165-4608(84)90006-2. [DOI] [PubMed] [Google Scholar]
  29. Némoz G., Zhang R., Sette C., Conti M. Identification of cyclic AMP-phosphodiesterase variants from the PDE4D gene expressed in human peripheral mononuclear cells. FEBS Lett. 1996 Apr 8;384(1):97–102. doi: 10.1016/0014-5793(96)00300-6. [DOI] [PubMed] [Google Scholar]
  30. Pillai R., Kytle K., Reyes A., Colicelli J. Use of a yeast expression system for the isolation and analysis of drug-resistant mutants of a mammalian phosphodiesterase. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11970–11974. doi: 10.1073/pnas.90.24.11970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Qiu Y. H., Chen C. N., Malone T., Richter L., Beckendorf S. K., Davis R. L. Characterization of the memory gene dunce of Drosophila melanogaster. J Mol Biol. 1991 Dec 5;222(3):553–565. doi: 10.1016/0022-2836(91)90496-s. [DOI] [PubMed] [Google Scholar]
  32. Qiu Y., Davis R. L. Genetic dissection of the learning/memory gene dunce of Drosophila melanogaster. Genes Dev. 1993 Jul;7(7B):1447–1458. doi: 10.1101/gad.7.7b.1447. [DOI] [PubMed] [Google Scholar]
  33. Scotland G., Houslay M. D. Chimeric constructs show that the unique N-terminal domain of the cyclic AMP phosphodiesterase RD1 (RNPDE4A1A; rPDE-IVA1) can confer membrane association upon the normally cytosolic protein chloramphenicol acetyltransferase. Biochem J. 1995 Jun 1;308(Pt 2):673–681. doi: 10.1042/bj3080673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sette C., Conti M. Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation. J Biol Chem. 1996 Jul 12;271(28):16526–16534. doi: 10.1074/jbc.271.28.16526. [DOI] [PubMed] [Google Scholar]
  35. Sette C., Iona S., Conti M. The short-term activation of a rolipram-sensitive, cAMP-specific phosphodiesterase by thyroid-stimulating hormone in thyroid FRTL-5 cells is mediated by a cAMP-dependent phosphorylation. J Biol Chem. 1994 Mar 25;269(12):9245–9252. [PubMed] [Google Scholar]
  36. Sette C., Vicini E., Conti M. The ratPDE3/IVd phosphodiesterase gene codes for multiple proteins differentially activated by cAMP-dependent protein kinase. J Biol Chem. 1994 Jul 15;269(28):18271–18274. [PubMed] [Google Scholar]
  37. Shakur Y., Wilson M., Pooley L., Lobban M., Griffiths S. L., Campbell A. M., Beattie J., Daly C., Houslay M. D. Identification and characterization of the type-IVA cyclic AMP-specific phosphodiesterase RD1 as a membrane-bound protein expressed in cerebellum. Biochem J. 1995 Mar 15;306(Pt 3):801–809. doi: 10.1042/bj3060801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Short J. M., Fernandez J. M., Sorge J. A., Huse W. D. Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res. 1988 Aug 11;16(15):7583–7600. doi: 10.1093/nar/16.15.7583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Swinnen J. V., Joseph D. R., Conti M. The mRNA encoding a high-affinity cAMP phosphodiesterase is regulated by hormones and cAMP. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8197–8201. doi: 10.1073/pnas.86.21.8197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Swinnen J. V., Tsikalas K. E., Conti M. Properties and hormonal regulation of two structurally related cAMP phosphodiesterases from the rat Sertoli cell. J Biol Chem. 1991 Sep 25;266(27):18370–18377. [PubMed] [Google Scholar]
  41. Thompson W. J., Appleman M. M. Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry. 1971 Jan 19;10(2):311–316. [PubMed] [Google Scholar]
  42. Torphy T. J., Stadel J. M., Burman M., Cieslinski L. B., McLaughlin M. M., White J. R., Livi G. P. Coexpression of human cAMP-specific phosphodiesterase activity and high affinity rolipram binding in yeast. J Biol Chem. 1992 Jan 25;267(3):1798–1804. [PubMed] [Google Scholar]
  43. Verghese M. W., McConnell R. T., Lenhard J. M., Hamacher L., Jin S. L. Regulation of distinct cyclic AMP-specific phosphodiesterase (phosphodiesterase type 4) isozymes in human monocytic cells. Mol Pharmacol. 1995 Jun;47(6):1164–1171. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES