Abstract
The ESR spin-trapping technique was employed to investigate the reaction of rabbit cytochrome P-450 1A2 (P450) with linoleic acid hydroperoxide. This system was compared with chemical systems where FeSO4 or FeCl3 was used in place of P450. The spin trap 5, 5'-dimethyl-1-pyrroline N-oxide (DMPO) was employed to detect and identify radical species. The DMPO adducts of hydroxyl, O2-., peroxyl, methyl and acyl radicals were detected in the P450 system. The reaction did not require NADPH-cytochrome P-450 reductase or NADPH. The same DMPO-radical adducts were detected in the FeSO4 system. Only DMPO-.OH radical adduct and carbon-centred radical adducts were detected in the FeCl3 system. Peroxyl radical production was completely O2-dependent. We propose that polyunsaturated fatty acids are initially reduced to form alkoxyl radicals, which then undergo intramolecular rearrangement to form epoxyalkyl radicals. Each epoxyalkyl radical reacts with O2, forming a peroxyl radical. Subsequent unimolecular decomposition of this peroxyl radical eliminates O2-. radical.
Full Text
The Full Text of this article is available as a PDF (796.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alterman M. A., Dowgii A. I. A simple and rapid method for the purification of cytochrome P-450 (form LM4). Biomed Chromatogr. 1990 Sep;4(5):221–222. doi: 10.1002/bmc.1130040510. [DOI] [PubMed] [Google Scholar]
- Barr D. P., Martin M. V., Guengerich F. P., Mason R. P. Reaction of cytochrome P450 with cumene hydroperoxide: ESR spin-trapping evidence for the homolytic scission of the peroxide O-O bond by ferric cytochrome P450 1A2. Chem Res Toxicol. 1996 Jan-Feb;9(1):318–325. doi: 10.1021/tx9501501. [DOI] [PubMed] [Google Scholar]
- Bielski B. H., Arudi R. L., Sutherland M. W. A study of the reactivity of HO2/O2- with unsaturated fatty acids. J Biol Chem. 1983 Apr 25;258(8):4759–4761. [PubMed] [Google Scholar]
- Blake R. C., 2nd, Coon M. J. On the mechanism of action of cytochrome P-450. Spectral intermediates in the reaction of P-450LM2 with peroxy compounds. J Biol Chem. 1980 May 10;255(9):4100–4111. [PubMed] [Google Scholar]
- Buettner G. R., Oberley L. W. The production of hydroxyl radical by tallysomycin and copper(II). FEBS Lett. 1979 May 15;101(2):333–335. doi: 10.1016/0014-5793(79)81037-6. [DOI] [PubMed] [Google Scholar]
- Chamulitrat W., Hughes M. F., Eling T. E., Mason R. P. Superoxide and peroxyl radical generation from the reduction of polyunsaturated fatty acid hydroperoxides by soybean lipoxygenase. Arch Biochem Biophys. 1991 Oct;290(1):153–159. doi: 10.1016/0003-9861(91)90601-e. [DOI] [PubMed] [Google Scholar]
- Chamulitrat W., Mason R. P. Alkyl free radicals from the beta-scission of fatty acid alkoxyl radicals as detected by spin trapping in a lipoxygenase system. Arch Biochem Biophys. 1990 Oct;282(1):65–69. doi: 10.1016/0003-9861(90)90087-f. [DOI] [PubMed] [Google Scholar]
- Correia M. A., Yao K., Allentoff A. J., Wrighton S. A., Thompson J. A. Interactions of peroxyquinols with cytochromes P450 2B1, 3A1, and 3A5: influence of the apoprotein on heterolytic versus homolytic O-O bond cleavage. Arch Biochem Biophys. 1995 Mar 10;317(2):471–478. doi: 10.1006/abbi.1995.1190. [DOI] [PubMed] [Google Scholar]
- Davies M. J., Slater T. F. Studies on the metal-ion and lipoxygenase-catalysed breakdown of hydroperoxides using electron-spin-resonance spectroscopy. Biochem J. 1987 Jul 1;245(1):167–173. doi: 10.1042/bj2450167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dix T. A., Fontana R., Panthani A., Marnett L. J. Hematin-catalyzed epoxidation of 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene by polyunsaturated fatty acid hydroperoxides. J Biol Chem. 1985 May 10;260(9):5358–5365. [PubMed] [Google Scholar]
- Dix T. A., Marnett L. J. Conversion of linoleic acid hydroperoxide to hydroxy, keto, epoxyhydroxy, and trihydroxy fatty acids by hematin. J Biol Chem. 1985 May 10;260(9):5351–5357. [PubMed] [Google Scholar]
- Duling D. R. Simulation of multiple isotropic spin-trap EPR spectra. J Magn Reson B. 1994 Jun;104(2):105–110. doi: 10.1006/jmrb.1994.1062. [DOI] [PubMed] [Google Scholar]
- Gardner H. W. Decomposition of linoleic acid hydroperoxides. Enzymic reactions compared with nonenzymic. J Agric Food Chem. 1975 Mar-Apr;23(2):129–136. doi: 10.1021/jf60198a012. [DOI] [PubMed] [Google Scholar]
- Garssen G. J., Veldink G. A., Vliegenthart J. F., Boldingh J. The formation of threo-11-hydroxy-trans-12: 13-epoxy-9-cis-octadecenoic acid by enzymic isomerisation of 13-L-hydroperoxy-9-cis, 11-transoctadecadienoic acid by soybean lipoxygenase-1. Eur J Biochem. 1976 Feb 2;62(1):33–36. doi: 10.1111/j.1432-1033.1976.tb10094.x. [DOI] [PubMed] [Google Scholar]
- Guengerich F. P. Covalent binding to apoprotein is a major fate of heme in a variety of reactions in which cytochrome P-450 is destroyed. Biochem Biophys Res Commun. 1986 Jul 16;138(1):193–198. doi: 10.1016/0006-291x(86)90265-2. [DOI] [PubMed] [Google Scholar]
- Hanna P. M., Chamulitrat W., Mason R. P. When are metal ion-dependent hydroxyl and alkoxyl radical adducts of 5,5-dimethyl-1-pyrroline N-oxide artifacts? Arch Biochem Biophys. 1992 Aug 1;296(2):640–644. doi: 10.1016/0003-9861(92)90620-c. [DOI] [PubMed] [Google Scholar]
- Henke D. C., Kouzan S., Eling T. E. Analysis of leukotrienes, prostaglandins, and other oxygenated metabolites of arachidonic acid by high-performance liquid chromatography. Anal Biochem. 1984 Jul;140(1):87–94. doi: 10.1016/0003-2697(84)90137-4. [DOI] [PubMed] [Google Scholar]
- Hughes M. F., Chamulitrat W., Mason R. P., Eling T. E. Epoxidation of 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene via a hydroperoxide-dependent mechanism catalyzed by lipoxygenases. Carcinogenesis. 1989 Nov;10(11):2075–2080. doi: 10.1093/carcin/10.11.2075. [DOI] [PubMed] [Google Scholar]
- Iba M. M., Mannering G. J. NADPH- and linoleic acid hydroperoxide-induced lipid peroxidation and destruction of cytochrome P-450 in hepatic microsomes. Biochem Pharmacol. 1987 May 1;36(9):1447–1455. doi: 10.1016/0006-2952(87)90109-2. [DOI] [PubMed] [Google Scholar]
- Inoue S., Kawanishi S. ESR evidence for superoxide, hydroxyl radicals and singlet oxygen produced from hydrogen peroxide and nickel(II) complex of glycylglycyl-L-histidine. Biochem Biophys Res Commun. 1989 Mar 15;159(2):445–451. doi: 10.1016/0006-291x(89)90012-0. [DOI] [PubMed] [Google Scholar]
- Iwahashi H., Deterding L. J., Parker C. E., Mason R. P., Tomer K. B. Identification of radical adducts formed in the reactions of unsaturated fatty acids with soybean lipoxygenase using continuous flow fast atom bombardment with tandem mass spectrometry. Free Radic Res. 1996 Sep;25(3):255–274. doi: 10.3109/10715769609149051. [DOI] [PubMed] [Google Scholar]
- Karuzina I. I., Archakov A. I. Hydrogen peroxide-mediated inactivation of microsomal cytochrome P450 during monooxygenase reactions. Free Radic Biol Med. 1994 Dec;17(6):557–567. doi: 10.1016/0891-5849(94)90095-7. [DOI] [PubMed] [Google Scholar]
- Krainev A. G., Williams T. D., Bigelow D. J. Oxygen-centered spin adducts of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and 2H-imidazole 1-oxides. J Magn Reson B. 1996 Jun;111(3):272–280. doi: 10.1006/jmrb.1996.0093. [DOI] [PubMed] [Google Scholar]
- Lindstrom T. D., Aust S. D. Studies on cytochrome P-450-dependent lipid hydroperoxide reduction. Arch Biochem Biophys. 1984 Aug 15;233(1):80–87. doi: 10.1016/0003-9861(84)90603-9. [DOI] [PubMed] [Google Scholar]
- Lloyd R. V., Mason R. P. Evidence against transition metal-independent hydroxyl radical generation by xanthine oxidase. J Biol Chem. 1990 Oct 5;265(28):16733–16736. [PubMed] [Google Scholar]
- Makino K., Hagiwara T., Hagi A., Nishi M., Murakami A. Cautionary note for DMPO spin trapping in the presence of iron ion. Biochem Biophys Res Commun. 1990 Nov 15;172(3):1073–1080. doi: 10.1016/0006-291x(90)91556-8. [DOI] [PubMed] [Google Scholar]
- Marnett L. J. Peroxyl free radicals: biological reactive intermediates produced during lipid oxidation. Adv Exp Med Biol. 1991;283:65–70. doi: 10.1007/978-1-4684-5877-0_6. [DOI] [PubMed] [Google Scholar]
- Marnett L. J. Peroxyl free radicals: potential mediators of tumor initiation and promotion. Carcinogenesis. 1987 Oct;8(10):1365–1373. doi: 10.1093/carcin/8.10.1365. [DOI] [PubMed] [Google Scholar]
- Nerland D. E., Iba M. M., Mannering G. J. Use of linoleic acid hydroperoxide in the determination of absolute spectra of membrane-bound cytochrome P-450. Mol Pharmacol. 1981 Jan;19(1):162–167. [PubMed] [Google Scholar]
- Sandhu P., Guo Z., Baba T., Martin M. V., Tukey R. H., Guengerich F. P. Expression of modified human cytochrome P450 1A2 in Escherichia coli: stabilization, purification, spectral characterization, and catalytic activities of the enzyme. Arch Biochem Biophys. 1994 Feb 15;309(1):168–177. doi: 10.1006/abbi.1994.1099. [DOI] [PubMed] [Google Scholar]
- Schaefer W. H., Harris T. M., Guengerich F. P. Characterization of the enzymatic and nonenzymatic peroxidative degradation of iron porphyrins and cytochrome P-450 heme. Biochemistry. 1985 Jun 18;24(13):3254–3263. doi: 10.1021/bi00334a027. [DOI] [PubMed] [Google Scholar]
- Schreiber J., Mason R. P., Eling T. E. Carbon-centered free radical intermediates in the hematin- and ram seminal vesicle-catalyzed decomposition of fatty acid hydroperoxides. Arch Biochem Biophys. 1986 Nov 15;251(1):17–24. doi: 10.1016/0003-9861(86)90046-9. [DOI] [PubMed] [Google Scholar]
- Shimizu T., Murakami Y., Hatano M. Glu318 and Thr319 mutations of cytochrome P450 1A2 remarkably enhance homolytic O-O cleavage of alkyl hydroperoxides. An optical absorption spectral study. J Biol Chem. 1994 May 6;269(18):13296–13304. [PubMed] [Google Scholar]
- Thompson J. A., Wand M. D. Interaction of cytochrome P-450 with a hydroperoxide derived from butylated hydroxytoluene. Mechanism of isomerization. J Biol Chem. 1985 Sep 5;260(19):10637–10644. [PubMed] [Google Scholar]
- Thompson J. A., Yumibe N. P. Mechanistic aspects of cytochrome P-450-hydroperoxide interactions: substituent effects on degradative pathways. Drug Metab Rev. 1989;20(2-4):365–378. doi: 10.3109/03602538909103548. [DOI] [PubMed] [Google Scholar]
- Thornalley P. J., Stern A. Red blood cell oxidative metabolism induced by hydroxypyruvaldehyde. Biochem Pharmacol. 1985 Apr 15;34(8):1157–1164. doi: 10.1016/0006-2952(85)90489-7. [DOI] [PubMed] [Google Scholar]
- Vaz A. D., Coon M. J. Hydrocarbon formation in the reductive cleavage of hydroperoxides by cytochrome P-450. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1172–1176. doi: 10.1073/pnas.84.5.1172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vaz A. D., Coon M. J. Reductive cleavage of hydroperoxides by cytochrome P-450. Methods Enzymol. 1990;186:278–282. doi: 10.1016/0076-6879(90)86120-k. [DOI] [PubMed] [Google Scholar]
- Weiss R. H., Estabrook R. W. The mechanism of cumene hydroperoxide-dependent lipid peroxidation: the function of cytochrome P-450. Arch Biochem Biophys. 1986 Nov 15;251(1):348–360. doi: 10.1016/0003-9861(86)90082-2. [DOI] [PubMed] [Google Scholar]
- White R. E., Coon M. J. Oxygen activation by cytochrome P-450. Annu Rev Biochem. 1980;49:315–356. doi: 10.1146/annurev.bi.49.070180.001531. [DOI] [PubMed] [Google Scholar]
- Wilcox A. L., Marnett L. J. Polyunsaturated fatty acid alkoxyl radicals exist as carbon-centered epoxyallylic radicals: a key step in hydroperoxide-amplified lipid peroxidation. Chem Res Toxicol. 1993 Jul-Aug;6(4):413–416. doi: 10.1021/tx00034a003. [DOI] [PubMed] [Google Scholar]
- Yao K., Falick A. M., Patel N., Correia M. A. Cumene hydroperoxide-mediated inactivation of cytochrome P450 2B1. Identification of an active site heme-modified peptide. J Biol Chem. 1993 Jan 5;268(1):59–65. [PubMed] [Google Scholar]
- de Groot J. J., Veldink G. A., Vliegenthart J. F., Boldingh J., Wever R., van Gelder B. F. Demonstration by EPR spectroscopy of the functional role of iron in soybean lipoxygenase-1. Biochim Biophys Acta. 1975 Jan 23;377(1):71–79. doi: 10.1016/0005-2744(75)90287-9. [DOI] [PubMed] [Google Scholar]