Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Dec 1;328(Pt 2):587–591. doi: 10.1042/bj3280587

Cleavage of arginyl-arginine and lysyl-arginine from the C-terminus of pro-hormone peptides by human germinal angiotensin I-converting enzyme (ACE) and the C-domain of human somatic ACE.

R E Isaac 1, T A Williams 1, M Sajid 1, P Corvol 1, D Coates 1
PMCID: PMC1218959  PMID: 9371719

Abstract

Mammalian germinal angiotensin I-converting enzyme (gACE) is a single-domain dipeptidyl carboxypeptidase found exclusively in male germ cells, which has almost identical sequence and enzymic properties with the C-domain of the two-domain somatic ACE. Mutant mice that do not express gACE are infertile, suggesting a role for the enzyme in the processing of undefined peptides involved in fertilization. A number of spermatid peptides [e.g. cholecystokinin (CCK) and gastrin] are processed from pro-hormones by endo- and exo-proteolytic cleavages which might generate substrates for gACE. We have shown that peptide hormone intermediates with Lys/Arg-Arg at the C-terminus are high-affinity substrates for human gACE. gACE from human sperm cleaved Arg-Arg from the C-terminus of the CCK5-GRR (GWMDFGRR), a peptide corresponding to the C-terminus of a CCK-gastrin prohormone intermediate. Hydrolysis of CCK5-GRR by recombinant human C-domain ACE was Cl- dependent, with maximal activity achieved in 5-10 mM NaCl at pH 6.4. C-Domain ACE cleaved Lys/Arg-Arg from the C-terminus of dynorphin-(1-7), a pro-TRH peptide KRQHPGKR, and two insect peptides FSPRLGKR and FSPRLGRR. C-Domain ACE displayed high affinity towards all these substrates with Vmax/Km values between 14 and 113 times greater than the Vmax/Km for the conversion of the best known ACE substrate, angiotensin I, into angiotensin II. In conclusion, we have identified a new class of substrates for human gACE, and we suggest that gACE might be an alternative to carboxypeptidase E for the trimming of basic dipeptides from the C-terminus of intermediates generated from pro-hormones by subtilisin-like convertases in human male germ cells.

Full Text

The Full Text of this article is available as a PDF (272.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azizi M., Rousseau A., Ezan E., Guyene T. T., Michelet S., Grognet J. M., Lenfant M., Corvol P., Ménard J. Acute angiotensin-converting enzyme inhibition increases the plasma level of the natural stem cell regulator N-acetyl-seryl-aspartyl-lysyl-proline. J Clin Invest. 1996 Feb 1;97(3):839–844. doi: 10.1172/JCI118484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bünning P., Holmquist B., Riordan J. F. Substrate specificity and kinetic characteristics of angiotensin converting enzyme. Biochemistry. 1983 Jan 4;22(1):103–110. doi: 10.1021/bi00270a015. [DOI] [PubMed] [Google Scholar]
  3. Bünning P., Riordan J. F. Activation of angiotensin converting enzyme by monovalent anions. Biochemistry. 1983 Jan 4;22(1):110–116. doi: 10.1021/bi00270a016. [DOI] [PubMed] [Google Scholar]
  4. Carpenter C., Honkanen A. A., Mashimo H., Goss K. A., Huang P., Fishman M. C., Asaad M., Dorso C. R., Cheung H. Renal abnormalities in mutant mice. Nature. 1996 Mar 28;380(6572):292–292. doi: 10.1038/380292a0. [DOI] [PubMed] [Google Scholar]
  5. Cool D. R., Normant E., Shen F., Chen H. C., Pannell L., Zhang Y., Loh Y. P. Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads to endocrine disorders in Cpe(fat) mice. Cell. 1997 Jan 10;88(1):73–83. doi: 10.1016/s0092-8674(00)81860-7. [DOI] [PubMed] [Google Scholar]
  6. Corvol P., Williams T. A., Soubrier F. Peptidyl dipeptidase A: angiotensin I-converting enzyme. Methods Enzymol. 1995;248:283–305. doi: 10.1016/0076-6879(95)48020-x. [DOI] [PubMed] [Google Scholar]
  7. Cushman D. W., Cheung H. S. Concentrations of angiotensin-converting enzyme in tissues of the rat. Biochim Biophys Acta. 1971 Oct;250(1):261–265. doi: 10.1016/0005-2744(71)90142-2. [DOI] [PubMed] [Google Scholar]
  8. Ehlers M. R., Chen Y. N., Riordan J. F. Spontaneous solubilization of membrane-bound human testis angiotensin-converting enzyme expressed in Chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):1009–1013. doi: 10.1073/pnas.88.3.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ehlers M. R., Riordan J. F. Angiotensin-converting enzyme: new concepts concerning its biological role. Biochemistry. 1989 Jun 27;28(13):5311–5318. doi: 10.1021/bi00439a001. [DOI] [PubMed] [Google Scholar]
  10. Erdös E. G. Angiotensin I converting enzyme and the changes in our concepts through the years. Lewis K. Dahl memorial lecture. Hypertension. 1990 Oct;16(4):363–370. doi: 10.1161/01.hyp.16.4.363. [DOI] [PubMed] [Google Scholar]
  11. Esther C. R., Jr, Howard T. E., Marino E. M., Goddard J. M., Capecchi M. R., Bernstein K. E. Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest. 1996 May;74(5):953–965. [PubMed] [Google Scholar]
  12. Hannibal J., Fahrenkrug J. Expression of pituitary adenylate cyclase activating polypeptide (PACAP) gene by rat spermatogenic cells. Regul Pept. 1995 Jan 5;55(1):111–115. doi: 10.1016/0167-0115(94)00110-j. [DOI] [PubMed] [Google Scholar]
  13. Hubert C., Houot A. M., Corvol P., Soubrier F. Structure of the angiotensin I-converting enzyme gene. Two alternate promoters correspond to evolutionary steps of a duplicated gene. J Biol Chem. 1991 Aug 15;266(23):15377–15383. [PubMed] [Google Scholar]
  14. Kew D., Muffly K. E., Kilpatrick D. L. Proenkephalin products are stored in the sperm acrosome and may function in fertilization. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9143–9147. doi: 10.1073/pnas.87.23.9143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kilpatrick D. L., Millette C. F. Expression of proenkephalin messenger RNA by mouse spermatogenic cells. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5015–5018. doi: 10.1073/pnas.83.14.5015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kim H. S., Krege J. H., Kluckman K. D., Hagaman J. R., Hodgin J. B., Best C. F., Jennette J. C., Coffman T. M., Maeda N., Smithies O. Genetic control of blood pressure and the angiotensinogen locus. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2735–2739. doi: 10.1073/pnas.92.7.2735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kononen J., Paavola M., Penttilä T. L., Parvinen M., Pelto-Huikko M. Stage-specific expression of pituitary adenylate cyclase-activating polypeptide (PACAP) mRNA in the rat seminiferous tubules. Endocrinology. 1994 Nov;135(5):2291–2294. doi: 10.1210/endo.135.5.7956953. [DOI] [PubMed] [Google Scholar]
  18. Krege J. H., John S. W., Langenbach L. L., Hodgin J. B., Hagaman J. R., Bachman E. S., Jennette J. C., O'Brien D. A., Smithies O. Male-female differences in fertility and blood pressure in ACE-deficient mice. Nature. 1995 May 11;375(6527):146–148. doi: 10.1038/375146a0. [DOI] [PubMed] [Google Scholar]
  19. Mbikay M., Tadros H., Ishida N., Lerner C. P., De Lamirande E., Chen A., El-Alfy M., Clermont Y., Seidah N. G., Chrétien M. Impaired fertility in mice deficient for the testicular germ-cell protease PC4. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6842–6846. doi: 10.1073/pnas.94.13.6842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Naggert J. K., Fricker L. D., Varlamov O., Nishina P. M., Rouille Y., Steiner D. F., Carroll R. J., Paigen B. J., Leiter E. H. Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nat Genet. 1995 Jun;10(2):135–142. doi: 10.1038/ng0695-135. [DOI] [PubMed] [Google Scholar]
  21. Persson H., Rehfeld J. F., Ericsson A., Schalling M., Pelto-Huikko M., Hökfelt T. Transient expression of the cholecystokinin gene in male germ cells and accumulation of the peptide in the acrosomal granule: possible role of cholecystokinin in fertilization. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6166–6170. doi: 10.1073/pnas.86.16.6166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rouillé Y., Duguay S. J., Lund K., Furuta M., Gong Q., Lipkind G., Oliva A. A., Jr, Chan S. J., Steiner D. F. Proteolytic processing mechanisms in the biosynthesis of neuroendocrine peptides: the subtilisin-like proprotein convertases. Front Neuroendocrinol. 1995 Oct;16(4):322–361. doi: 10.1006/frne.1995.1012. [DOI] [PubMed] [Google Scholar]
  23. Schalling M., Persson H., Pelto-Huikko M., Odum L., Ekman P., Gottlieb C., Hökfelt T., Rehfeld J. F. Expression and localization of gastrin messenger RNA and peptide in spermatogenic cells. J Clin Invest. 1990 Aug;86(2):660–669. doi: 10.1172/JCI114758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shapiro R., Holmquist B., Riordan J. F. Anion activation of angiotensin converting enzyme: dependence on nature of substrate. Biochemistry. 1983 Aug 2;22(16):3850–3857. doi: 10.1021/bi00285a021. [DOI] [PubMed] [Google Scholar]
  25. Shioda S., Legradi G., Leung W. C., Nakajo S., Nakaya K., Arimura A. Localization of pituitary adenylate cyclase-activating polypeptide and its messenger ribonucleic acid in the rat testis by light and electron microscopic immunocytochemistry and in situ hybridization. Endocrinology. 1994 Sep;135(3):818–825. doi: 10.1210/endo.135.3.8070375. [DOI] [PubMed] [Google Scholar]
  26. Sibony M., Gasc J. M., Soubrier F., Alhenc-Gelas F., Corvol P. Gene expression and tissue localization of the two isoforms of angiotensin I converting enzyme. Hypertension. 1993 Jun;21(6 Pt 1):827–835. doi: 10.1161/01.hyp.21.6.827. [DOI] [PubMed] [Google Scholar]
  27. Sibony M., Segretain D., Gasc J. M. Angiotensin-converting enzyme in murine testis: step-specific expression of the germinal isoform during spermiogenesis. Biol Reprod. 1994 May;50(5):1015–1026. doi: 10.1095/biolreprod50.5.1015. [DOI] [PubMed] [Google Scholar]
  28. Soffer R. L. Angiotensin-converting enzyme and the regulation of vasoactive peptides. Annu Rev Biochem. 1976;45:73–94. doi: 10.1146/annurev.bi.45.070176.000445. [DOI] [PubMed] [Google Scholar]
  29. Soubrier F., Hubert C., Testut P., Nadaud S., Alhenc-Gelas F., Corvol P. Molecular biology of the angiotensin I converting enzyme: I. Biochemistry and structure of the gene. J Hypertens. 1993 May;11(5):471–476. doi: 10.1097/00004872-199305000-00001. [DOI] [PubMed] [Google Scholar]
  30. Strittmatter S. M., Lynch D. R., De Souza E. B., Snyder S. H. Enkephalin convertase demonstrated in the pituitary and adrenal gland by [3H]guanidinoethylmercaptosuccinic acid autoradiography: dehydration decreases neurohypophyseal levels. Endocrinology. 1985 Oct;117(4):1667–1674. doi: 10.1210/endo-117-4-1667. [DOI] [PubMed] [Google Scholar]
  31. Torii S., Yamagishi T., Murakami K., Nakayama K. Localization of Kex2-like processing endoproteases, furin and PC4, within mouse testis by in situ hybridization. FEBS Lett. 1993 Jan 18;316(1):12–16. doi: 10.1016/0014-5793(93)81726-g. [DOI] [PubMed] [Google Scholar]
  32. Vivet F., Callard P., Gamoudi A. Immunolocalization of angiotensin 1 converting enzyme in the human male genital tract by the avidin-biotin-complex method. Histochemistry. 1987;86(5):499–502. doi: 10.1007/BF00500623. [DOI] [PubMed] [Google Scholar]
  33. Wei L., Alhenc-Gelas F., Corvol P., Clauser E. The two homologous domains of human angiotensin I-converting enzyme are both catalytically active. J Biol Chem. 1991 May 15;266(14):9002–9008. [PubMed] [Google Scholar]
  34. Williams T. A., Gouttaya M., Tougard C., Michaud A., Chauvet M. T., Corvol P. Cleavage-secretion of angiotensin I-converting enzyme in yeast. Mol Cell Endocrinol. 1997 Apr 4;128(1-2):39–45. doi: 10.1016/s0303-7207(97)04022-7. [DOI] [PubMed] [Google Scholar]
  35. Williams T. A., Villard E., Prigent Y., Dadoune J. P., Soubrier F. A genetic study of angiotensin I-converting enzyme levels in human semen. Mol Cell Endocrinol. 1995 Feb;107(2):215–219. doi: 10.1016/0303-7207(94)03446-z. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES