Abstract
Oxidative mechanisms are thought to have a major role in several biological phenomena, including cataract formation and diabetic complications. Here we investigate the inactivation of catalase and superoxide dismutase, both powerful antioxidant enzymes, by sugars of different glycating abilities, and the loss of antigenicity that was monitored by the loss of activity after immunoprecipitation with monospecific antibodies. The antigenicity of non-glycated or glycated enzymes separated by affinity chromatography were determined by dot-blotting. Incubation with sugars resulted in a time-dependent inactivation of the enzymes. Ribose and fructose inactivated them more rapidly than glucose and glucose 6-phosphate. Glycation induced losses of antigenicity and inactivation simultaneously. The glycated enzymes had entirely lost their antigenicity compared with non-glycated enzyme. These results further support the idea that inactivation of enzyme and loss of antigenicity are simultaneous. This might occur in the pathogenesis of diabetic complications and aging.
Full Text
The Full Text of this article is available as a PDF (526.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adachi T., Ohta H., Hayashi K., Hirano K., Marklund S. L. The site of nonenzymic glycation of human extracellular-superoxide dismutase in vitro. Free Radic Biol Med. 1992 Sep;13(3):205–210. doi: 10.1016/0891-5849(92)90016-a. [DOI] [PubMed] [Google Scholar]
- Adachi T., Ohta H., Hirano K., Hayashi K., Marklund S. L. Non-enzymic glycation of human extracellular superoxide dismutase. Biochem J. 1991 Oct 1;279(Pt 1):263–267. doi: 10.1042/bj2790263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arai K., Maguchi S., Fujii S., Ishibashi H., Oikawa K., Taniguchi N. Glycation and inactivation of human Cu-Zn-superoxide dismutase. Identification of the in vitro glycated sites. J Biol Chem. 1987 Dec 15;262(35):16969–16972. [PubMed] [Google Scholar]
- Babizhayev M. A. Failure to withstand oxidative stress induced by phospholipid hydroperoxides as a possible cause of the lens opacities in systemic diseases and ageing. Biochim Biophys Acta. 1996 Mar 1;1315(2):87–99. doi: 10.1016/0925-4439(95)00091-7. [DOI] [PubMed] [Google Scholar]
- Beswick H. T., Harding J. J. Conformational changes induced in lens alpha- and gamma-crystallins by modification with glucose 6-phosphate. Implications for cataract. Biochem J. 1987 Sep 15;246(3):761–769. doi: 10.1042/bj2460761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhuyan K. C., Bhuyan D. K., Podos S. M. Lipid peroxidation in cataract of the human. Life Sci. 1986 Apr 21;38(16):1463–1471. doi: 10.1016/0024-3205(86)90559-x. [DOI] [PubMed] [Google Scholar]
- Bhuyan K. C., Bhuyan D. K. Superoxide dismutase of the eye: relative functions of superoxide dismutase and catalase in protecting the ocular lens from oxidative damage. Biochim Biophys Acta. 1978 Aug 3;542(1):28–38. doi: 10.1016/0304-4165(78)90229-5. [DOI] [PubMed] [Google Scholar]
- Blakytny R., Harding J. J. Glycation (non-enzymic glycosylation) inactivates glutathione reductase. Biochem J. 1992 Nov 15;288(Pt 1):303–307. doi: 10.1042/bj2880303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blakytny R., Harding J. J. Prevention of cataract in diabetic rats by aspirin, paracetamol (acetaminophen) and ibuprofen. Exp Eye Res. 1992 Apr;54(4):509–518. doi: 10.1016/0014-4835(92)90129-g. [DOI] [PubMed] [Google Scholar]
- Bron A. J., Sparrow J., Brown N. A., Harding J. J., Blakytny R. The lens in diabetes. Eye (Lond) 1993;7(Pt 2):260–275. doi: 10.1038/eye.1993.60. [DOI] [PubMed] [Google Scholar]
- Brownlee M., Cerami A., Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988 May 19;318(20):1315–1321. doi: 10.1056/NEJM198805193182007. [DOI] [PubMed] [Google Scholar]
- Crabbe M. J., Goode D. Protein folds and functional similarity; the Greek key/immunoglobulin fold. Comput Chem. 1995 Dec;19(4):343–349. [PubMed] [Google Scholar]
- Dovrat A., Gershon D. Rat lens superoxide dismutase and glucose-6-phosphate dehydrogenase: studies on the catalytic activity and the fate of enzyme antigen as a function of age. Exp Eye Res. 1981 Dec;33(6):651–661. doi: 10.1016/s0014-4835(81)80105-4. [DOI] [PubMed] [Google Scholar]
- Dovrat A., Scharf J., Eisenbach L., Gershon D. G6PD molecules devoid of catalytic activity are present in the nucleus of the rat lens. Exp Eye Res. 1986 May;42(5):489–496. doi: 10.1016/0014-4835(86)90008-4. [DOI] [PubMed] [Google Scholar]
- Gallagher R. A., Malik A. N. The gene encoding human ribosomal protein L27 is developmentally regulated in human kidney. Biochem Soc Trans. 1994 Aug;22(3):245S–245S. doi: 10.1042/bst022245s. [DOI] [PubMed] [Google Scholar]
- Ganea E., Harding J. J. Molecular chaperones protect against glycation-induced inactivation of glucose-6-phosphate dehydrogenase. Eur J Biochem. 1995 Jul 1;231(1):181–185. [PubMed] [Google Scholar]
- Giblin F. J., McCready J. P., Schrimscher L., Reddy V. N. Peroxide-induced effects on lens cation transport following inhibition of glutathione reductase activity in vitro. Exp Eye Res. 1987 Jul;45(1):77–91. doi: 10.1016/s0014-4835(87)80080-5. [DOI] [PubMed] [Google Scholar]
- Giblin F. J., Reddan J. R., Schrimscher L., Dziedzic D. C., Reddy V. N. The relative roles of the glutathione redox cycle and catalase in the detoxification of H2O2 by cultured rabbit lens epithelial cells. Exp Eye Res. 1990 Jun;50(6):795–804. doi: 10.1016/0014-4835(90)90130-m. [DOI] [PubMed] [Google Scholar]
- González Flecha F. L., Castello P. R., Caride A. J., Gagliardino J. J., Rossi J. P. The erythrocyte calcium pump is inhibited by non-enzymic glycation: studies in situ and with the purified enzyme. Biochem J. 1993 Jul 15;293(Pt 2):369–375. doi: 10.1042/bj2930369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayakawa M., Kuzuya F. [Free radicals and diabetes mellitus]. Nihon Ronen Igakkai Zasshi. 1990 Mar;27(2):149–154. [PubMed] [Google Scholar]
- Heath M. M., Rixon K. C., Harding J. J. Glycation-induced inactivation of malate dehydrogenase protection by aspirin and a lens molecular chaperone, alpha-crystallin. Biochim Biophys Acta. 1996 Apr 12;1315(3):176–184. doi: 10.1016/0925-4439(95)00120-4. [DOI] [PubMed] [Google Scholar]
- Kinnula V. L., Everitt J. I., Mangum J. B., Chang L. Y., Crapo J. D. Antioxidant defense mechanisms in cultured pleural mesothelial cells. Am J Respir Cell Mol Biol. 1992 Jul;7(1):95–103. doi: 10.1165/ajrcmb/7.1.95. [DOI] [PubMed] [Google Scholar]
- Maria C. S., Revilla E., Ayala A., de la Cruz C. P., Machado A. Changes in the histidine residues of Cu/Zn superoxide dismutase during aging. FEBS Lett. 1995 Oct 23;374(1):85–88. doi: 10.1016/0014-5793(95)01083-q. [DOI] [PubMed] [Google Scholar]
- McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
- Ookawara T., Kawamura N., Kitagawa Y., Taniguchi N. Site-specific and random fragmentation of Cu,Zn-superoxide dismutase by glycation reaction. Implication of reactive oxygen species. J Biol Chem. 1992 Sep 15;267(26):18505–18510. [PubMed] [Google Scholar]
- Pennington J., Harding J. J. Identification of the site of glycation of gamma-II-crystallin by (14C)-fructose. Biochim Biophys Acta. 1994 May 25;1226(2):163–167. doi: 10.1016/0925-4439(94)90024-8. [DOI] [PubMed] [Google Scholar]
- Reddy V. N., Garadi R., Chakrapani B., Giblin F. J. Effect of glutathione depletion on cation transport and metabolism in the rabbit lens. Ophthalmic Res. 1988;20(3):191–199. doi: 10.1159/000266585. [DOI] [PubMed] [Google Scholar]
- Reddy V. N. Glutathione and its function in the lens--an overview. Exp Eye Res. 1990 Jun;50(6):771–778. doi: 10.1016/0014-4835(90)90127-g. [DOI] [PubMed] [Google Scholar]
- Rypniewski W. R., Mangani S., Bruni B., Orioli P. L., Casati M., Wilson K. S. Crystal structure of reduced bovine erythrocyte superoxide dismutase at 1.9 A resolution. J Mol Biol. 1995 Aug 11;251(2):282–296. doi: 10.1006/jmbi.1995.0434. [DOI] [PubMed] [Google Scholar]
- Sakurai T., Matsuyama M., Tsuchiya S. Glycation of erythrocyte superoxide dismutase reduces its activity. Chem Pharm Bull (Tokyo) 1987 Jan;35(1):302–307. doi: 10.1248/cpb.35.302. [DOI] [PubMed] [Google Scholar]
- Simonelli F., Cotticelli L., Iura A., Manna C., Nesti A., Rinaldi E., Auricchio G. The decrease of free epsilon-amino groups in senile and diabetic cataracts. Ophthalmic Res. 1990;22(3):160–165. doi: 10.1159/000267017. [DOI] [PubMed] [Google Scholar]
- Spector A., Garner W. H. Hydrogen peroxide and human cataract. Exp Eye Res. 1981 Dec;33(6):673–681. doi: 10.1016/s0014-4835(81)80107-8. [DOI] [PubMed] [Google Scholar]
- Syrovy I., Hodny Z. In vitro non-enzymatic glycosylation of myofibrillar proteins. Int J Biochem. 1993 Jun;25(6):941–946. doi: 10.1016/0020-711x(93)90251-9. [DOI] [PubMed] [Google Scholar]
- Varma S. D., Kumar S., Richards R. D. Light-induced damage to ocular lens cation pump: prevention by vitamin C. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3504–3506. doi: 10.1073/pnas.76.7.3504. [DOI] [PMC free article] [PubMed] [Google Scholar]