Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Dec 1;328(Pt 2):657–664. doi: 10.1042/bj3280657

Cloning, functional expression and dietary regulation of the mouse neutral and basic amino acid transporter (NBAT).

H Segawa 1, K Miyamoto 1, Y Ogura 1, H Haga 1, K Morita 1, K Katai 1, S Tatsumi 1, T Nii 1, Y Taketani 1, E Takeda 1
PMCID: PMC1218968  PMID: 9371728

Abstract

The Na+-independent dibasic and neutral amino acid transporter NBAT is among the least hydrophobic of mammalian amino acid transporters. The transporter contains one to four transmembrane domains and induces amino acid transport activity via a b0,+-like system when expressed in Xenopus oocytes. However, the physiological role of NBAT remains unclear. Complementary DNA clones encoding mouse NBAT have now been isolated. The expression of mouse NBAT in Xenopus oocytes also induced an obligatory amino acid exchange activity similar to that of the b0,+-like system. The amount of NBAT mRNA in mouse kidney increased during postnatal development, consistent with the increase in renal cystine and dibasic transport activity. Dietary aspartate induced a marked increase in cystine transport via the b0,+ system in mouse ileum. A high-aspartate diet also increased the amount of NBAT mRNA in mouse ileum. In the ileum of mice fed on the aspartate diet, the extent of cystine transport was further increased by preloading brush border membrane vesicles with lysine. Hybrid depletion of NBAT mRNA from ileal polyadenylated RNA revealed that the increase in cystine transport activity induced by the high-aspartate diet, as measured in Xenopus oocytes, was attributable to NBAT. These results demonstrate that mouse NBAT has an important role in cystine transport.

Full Text

The Full Text of this article is available as a PDF (427.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed A., Peter G. J., Taylor P. M., Harper A. A., Rennie M. J. Sodium-independent currents of opposite polarity evoked by neutral and cationic amino acids in neutral and basic amino acid transporter cRNA-injected oocytes. J Biol Chem. 1995 Apr 14;270(15):8482–8486. doi: 10.1074/jbc.270.15.8482. [DOI] [PubMed] [Google Scholar]
  2. Ahmed A., Yao P. C., Brant A. M., Peter G. J., Harper A. A. Electrogenic L-histidine transport in neutral and basic amino acid transporter (NBAT)-expressing Xenopus laevis oocytes. Evidence for two functionally distinct transport mechanisms induced by NBAT expression. J Biol Chem. 1997 Jan 3;272(1):125–130. [PubMed] [Google Scholar]
  3. Bertran J., Werner A., Chillarón J., Nunes V., Biber J., Testar X., Zorzano A., Estivill X., Murer H., Palacín M. Expression cloning of a human renal cDNA that induces high affinity transport of L-cystine shared with dibasic amino acids in Xenopus oocytes. J Biol Chem. 1993 Jul 15;268(20):14842–14849. [PubMed] [Google Scholar]
  4. Bertran J., Werner A., Moore M. L., Stange G., Markovich D., Biber J., Testar X., Zorzano A., Palacin M., Murer H. Expression cloning of a cDNA from rabbit kidney cortex that induces a single transport system for cystine and dibasic and neutral amino acids. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5601–5605. doi: 10.1073/pnas.89.12.5601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Busch A. E., Herzer T., Waldegger S., Schmidt F., Palacin M., Biber J., Markovich D., Murer H., Lang F. Opposite directed currents induced by the transport of dibasic and neutral amino acids in Xenopus oocytes expressing the protein rBAT. J Biol Chem. 1994 Oct 14;269(41):25581–25586. [PubMed] [Google Scholar]
  6. Calonge M. J., Gasparini P., Chillarón J., Chillón M., Gallucci M., Rousaud F., Zelante L., Testar X., Dallapiccola B., Di Silverio F. Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine. Nat Genet. 1994 Apr;6(4):420–425. doi: 10.1038/ng0494-420. [DOI] [PubMed] [Google Scholar]
  7. Calonge M. J., Volpini V., Bisceglia L., Rousaud F., de Sanctis L., Beccia E., Zelante L., Testar X., Zorzano A., Estivill X. Genetic heterogeneity in cystinuria: the SLC3A1 gene is linked to type I but not to type III cystinuria. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9667–9671. doi: 10.1073/pnas.92.21.9667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chillarón J., Estévez R., Mora C., Wagner C. A., Suessbrich H., Lang F., Gelpí J. L., Testar X., Busch A. E., Zorzano A. Obligatory amino acid exchange via systems bo,+-like and y+L-like. A tertiary active transport mechanism for renal reabsorption of cystine and dibasic amino acids. J Biol Chem. 1996 Jul 26;271(30):17761–17770. doi: 10.1074/jbc.271.30.17761. [DOI] [PubMed] [Google Scholar]
  9. Coady M. J., Jalal F., Chen X., Lemay G., Berteloot A., Lapointe J. Y. Electrogenic amino acid exchange via the rBAT transporter. FEBS Lett. 1994 Dec 19;356(2-3):174–178. doi: 10.1016/0014-5793(94)01262-8. [DOI] [PubMed] [Google Scholar]
  10. Erickson R. H., Gum J. R., Jr, Lindstrom M. M., McKean D., Kim Y. S. Regional expression and dietary regulation of rat small intestinal peptide and amino acid transporter mRNAs. Biochem Biophys Res Commun. 1995 Nov 2;216(1):249–257. doi: 10.1006/bbrc.1995.2617. [DOI] [PubMed] [Google Scholar]
  11. Ferraris R. P., Diamond J. M. Specific regulation of intestinal nutrient transporters by their dietary substrates. Annu Rev Physiol. 1989;51:125–141. doi: 10.1146/annurev.ph.51.030189.001013. [DOI] [PubMed] [Google Scholar]
  12. Furriols M., Chillarón J., Mora C., Castelló A., Bertran J., Camps M., Testar X., Vilaró S., Zorzano A., Palacín M. rBAT, related to L-cysteine transport, is localized to the microvilli of proximal straight tubules, and its expression is regulated in kidney by development. J Biol Chem. 1993 Dec 25;268(36):27060–27068. [PubMed] [Google Scholar]
  13. Gasparini P., Calonge M. J., Bisceglia L., Purroy J., Dianzani I., Notarangelo A., Rousaud F., Gallucci M., Testar X., Ponzone A. Molecular genetics of cystinuria: identification of four new mutations and seven polymorphisms, and evidence for genetic heterogeneity. Am J Hum Genet. 1995 Oct;57(4):781–788. [PMC free article] [PubMed] [Google Scholar]
  14. Hisano S., Haga H., Miyamoto K., Takeda E., Fukui Y. The basic amino acid transporter (rBAT)-like immunoreactivity in paraventricular and supraoptic magnocellular neurons of the rat hypothalamus. Brain Res. 1996 Feb 26;710(1-2):299–302. doi: 10.1016/0006-8993(95)01442-x. [DOI] [PubMed] [Google Scholar]
  15. Kanai Y., Stelzner M. G., Lee W. S., Wells R. G., Brown D., Hediger M. A. Expression of mRNA (D2) encoding a protein involved in amino acid transport in S3 proximal tubule. Am J Physiol. 1992 Dec;263(6 Pt 2):F1087–F1092. doi: 10.1152/ajprenal.1992.263.6.F1087. [DOI] [PubMed] [Google Scholar]
  16. Kim J. W., Closs E. I., Albritton L. M., Cunningham J. M. Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature. 1991 Aug 22;352(6337):725–728. doi: 10.1038/352725a0. [DOI] [PubMed] [Google Scholar]
  17. Lee W. S., Wells R. G., Sabbag R. V., Mohandas T. K., Hediger M. A. Cloning and chromosomal localization of a human kidney cDNA involved in cystine, dibasic, and neutral amino acid transport. J Clin Invest. 1993 May;91(5):1959–1963. doi: 10.1172/JCI116415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Magagnin S., Bertran J., Werner A., Markovich D., Biber J., Palacín M., Murer H. Poly(A)+ RNA from rabbit intestinal mucosa induces b0,+ and y+ amino acid transport activities in Xenopus laevis oocytes. J Biol Chem. 1992 Aug 5;267(22):15384–15390. [PubMed] [Google Scholar]
  19. McNamara P. D., Pepe L. M., Segal S. Cystine uptake by rat renal brush-border vesicles. Biochem J. 1981 Feb 15;194(2):443–449. doi: 10.1042/bj1940443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Minami H., Kim J. R., Tada K., Takahashi F., Miyamoto K., Nakabou Y., Sakai K., Hagihira H. Inhibition of glucose absorption by phlorizin affects intestinal functions in rats. Gastroenterology. 1993 Sep;105(3):692–697. doi: 10.1016/0016-5085(93)90884-f. [DOI] [PubMed] [Google Scholar]
  21. Miyamoto K., Katai K., Tatsumi S., Sone K., Segawa H., Yamamoto H., Taketani Y., Takada K., Morita K., Kanayama H. Mutations of the basic amino acid transporter gene associated with cystinuria. Biochem J. 1995 Sep 15;310(Pt 3):951–955. doi: 10.1042/bj3100951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Miyamoto K., Segawa H., Tatsumi S., Katai K., Yamamoto H., Taketani Y., Haga H., Morita K., Takeda E. Effects of truncation of the COOH-terminal region of a Na+-independent neutral and basic amino acid transporter on amino acid transport in Xenopus oocytes. J Biol Chem. 1996 Jul 12;271(28):16758–16763. doi: 10.1074/jbc.271.28.16758. [DOI] [PubMed] [Google Scholar]
  23. Miyamoto K., Tatsumi S., Morimoto A., Minami H., Yamamoto H., Sone K., Taketani Y., Nakabou Y., Oka T., Takeda E. Characterization of the rabbit intestinal fructose transporter (GLUT5). Biochem J. 1994 Nov 1;303(Pt 3):877–883. doi: 10.1042/bj3030877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Miyamoto K., Tatsumi S., Sonoda T., Yamamoto H., Minami H., Taketani Y., Takeda E. Cloning and functional expression of a Na(+)-dependent phosphate co-transporter from human kidney: cDNA cloning and functional expression. Biochem J. 1995 Jan 1;305(Pt 1):81–85. doi: 10.1042/bj3050081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pickel V. M., Nirenberg M. J., Chan J., Mosckovitz R., Udenfriend S., Tate S. S. Ultrastructural localization of a neutral and basic amino acid transporter in rat kidney and intestine. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7779–7783. doi: 10.1073/pnas.90.16.7779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pras E., Arber N., Aksentijevich I., Katz G., Schapiro J. M., Prosen L., Gruberg L., Harel D., Liberman U., Weissenbach J. Localization of a gene causing cystinuria to chromosome 2p. Nat Genet. 1994 Apr;6(4):415–419. doi: 10.1038/ng0494-415. [DOI] [PubMed] [Google Scholar]
  27. Quackenbush E., Clabby M., Gottesdiener K. M., Barbosa J., Jones N. H., Strominger J. L., Speck S., Leiden J. M. Molecular cloning of complementary DNAs encoding the heavy chain of the human 4F2 cell-surface antigen: a type II membrane glycoprotein involved in normal and neoplastic cell growth. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6526–6530. doi: 10.1073/pnas.84.18.6526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stein E. D., Chang S. D., Diamond J. M. Comparison of different dietary amino acids as inducers of intestinal amino acid transport. Am J Physiol. 1987 May;252(5 Pt 1):G626–G635. doi: 10.1152/ajpgi.1987.252.5.G626. [DOI] [PubMed] [Google Scholar]
  29. Tate S. S., Yan N., Udenfriend S. Expression cloning of a Na(+)-independent neutral amino acid transporter from rat kidney. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):1–5. doi: 10.1073/pnas.89.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Van Winkle L. J., Campione A. L., Gorman J. M. Na+-independent transport of basic and zwitterionic amino acids in mouse blastocysts by a shared system and by processes which distinguish between these substrates. J Biol Chem. 1988 Mar 5;263(7):3150–3163. [PubMed] [Google Scholar]
  31. Wang Y., Tate S. S. Oligomeric structure of a renal cystine transporter: implications in cystinuria. FEBS Lett. 1995 Jul 17;368(2):389–392. doi: 10.1016/0014-5793(95)00685-3. [DOI] [PubMed] [Google Scholar]
  32. Wells R. G., Hediger M. A. Cloning of a rat kidney cDNA that stimulates dibasic and neutral amino acid transport and has sequence similarity to glucosidases. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5596–5600. doi: 10.1073/pnas.89.12.5596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yan N., Mosckovitz R., Gerber L. D., Mathew S., Murty V. V., Tate S. S., Udenfriend S. Characterization of the promoter region of the gene for the rat neutral and basic amino acid transporter and chromosomal localization of the human gene. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7548–7552. doi: 10.1073/pnas.91.16.7548. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES