Abstract
PfPK4, a protein kinase gene from the human malarial parasite Plasmodium falciparum, has been cloned utilizing oligonucleotide probing. The gene encodes a protein of a predicted length of 1123 amino acids, and within this amino acid sequence all the conserved regions characteristic of protein kinases can be identified. The catalytic kinase domain possesses highest identities (34-37%) with eukaryotic initiation factor-2alpha (eIF-2alpha) kinases, especially haem-regulated inhibitory (HRI) protein kinases. There are two kinase inserts in PfPK4, located at positions common to eIF-2alpha kinases. The first insert separates kinase subdomains IV and VI by 559 amino acids, and the second subdomains VII and VIII by 41 amino acids. Both inserts are larger than their homologues in eIF-2alpha kinases. The sequence of PfPK4 has one putative haemin-binding site. The recombinant protein, expressed in Escherichia coli, phosphorylates a synthetic peptide representing a substrate of eIF-2alpha kinases. Autophosphorylation and substrate phosphorylation are inhibited by haemin. Thus PfPK4 appears to be the first protozoan protein kinase related to eIF-2alpha kinases and might be the first non-mammalian HRI kinase. Western blots indicated that the protein is expressed as major forms of 80 and 90 kDa. Whereas the 80 kDa form is present throughout the intraerythrocytic development and in merozoites, the two 90 kDa forms are only found in mature parasites. One of the latter is also present in the membrane fraction of erythrocytes harbouring segmenters. Confocal microscopy detected the protein distributed throughout the trophozoite, whereas it was found in discrete foci (punctate distribution) in segmenters. PfPK4 co-localizes with P. falciparum 83 kDa antigen/apical membrane antigen-1 at the apical complex in segmenters and merozoites, but does not co-localize with rhoptry-associated protein-1.
Full Text
The Full Text of this article is available as a PDF (733.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bushell G. R., Ingram L. T., Fardoulys C. A., Cooper J. A. An antigenic complex in the rhoptries of Plasmodium falciparum. Mol Biochem Parasitol. 1988 Mar;28(2):105–112. doi: 10.1016/0166-6851(88)90057-6. [DOI] [PubMed] [Google Scholar]
- Chen J. J., Crosby J. S., London I. M. Regulation of heme-regulated eIF-2 alpha kinase and its expression in erythroid cells. Biochimie. 1994;76(8):761–769. doi: 10.1016/0300-9084(94)90080-9. [DOI] [PubMed] [Google Scholar]
- Chen J. J., London I. M. Regulation of protein synthesis by heme-regulated eIF-2 alpha kinase. Trends Biochem Sci. 1995 Mar;20(3):105–108. doi: 10.1016/s0968-0004(00)88975-6. [DOI] [PubMed] [Google Scholar]
- Chen J. J., Throop M. S., Gehrke L., Kuo I., Pal J. K., Brodsky M., London I. M. Cloning of the cDNA of the heme-regulated eukaryotic initiation factor 2 alpha (eIF-2 alpha) kinase of rabbit reticulocytes: homology to yeast GCN2 protein kinase and human double-stranded-RNA-dependent eIF-2 alpha kinase. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7729–7733. doi: 10.1073/pnas.88.17.7729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crewther P. E., Culvenor J. G., Silva A., Cooper J. A., Anders R. F. Plasmodium falciparum: two antigens of similar size are located in different compartments of the rhoptry. Exp Parasitol. 1990 Feb;70(2):193–206. doi: 10.1016/0014-4894(90)90100-q. [DOI] [PubMed] [Google Scholar]
- Feng G. S., Chong K., Kumar A., Williams B. R. Identification of double-stranded RNA-binding domains in the interferon-induced double-stranded RNA-activated p68 kinase. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5447–5451. doi: 10.1073/pnas.89.12.5447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freeman R. R., Holder A. A. Surface antigens of malaria merozoites. A high molecular weight precursor is processed to an 83,000 mol wt form expressed on the surface of Plasmodium falciparum merozoites. J Exp Med. 1983 Nov 1;158(5):1647–1653. doi: 10.1084/jem.158.5.1647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goman M., Langsley G., Hyde J. E., Yankovsky N. K., Zolg J. W., Scaife J. G. The establishment of genomic DNA libraries for the human malaria parasite Plasmodium falciparum and identification of individual clones by hybridisation. Mol Biochem Parasitol. 1982 Jun;5(6):391–400. doi: 10.1016/0166-6851(82)90012-3. [DOI] [PubMed] [Google Scholar]
- Gottesman S., Halpern E., Trisler P. Role of sulA and sulB in filamentation by lon mutants of Escherichia coli K-12. J Bacteriol. 1981 Oct;148(1):265–273. doi: 10.1128/jb.148.1.265-273.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graeser R., Küry P., Franklin R. M., Kappes B. Characterization of a mitogen-activated protein (MAP) kinase from Plasmodium falciparum. Mol Microbiol. 1997 Jan;23(1):151–159. doi: 10.1046/j.1365-2958.1997.2071571.x. [DOI] [PubMed] [Google Scholar]
- Green S. R., Mathews M. B. Two RNA-binding motifs in the double-stranded RNA-activated protein kinase, DAI. Genes Dev. 1992 Dec;6(12B):2478–2490. doi: 10.1101/gad.6.12b.2478. [DOI] [PubMed] [Google Scholar]
- Hanks S. K., Quinn A. M., Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988 Jul 1;241(4861):42–52. doi: 10.1126/science.3291115. [DOI] [PubMed] [Google Scholar]
- Hinnebusch A. G. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev. 1988 Jun;52(2):248–273. doi: 10.1128/mr.52.2.248-273.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hyde J. E., Goman M., Hall R., Osland A., Hope I. A., Langsley G., Zolg J. W., Scaife J. G. Characterisation and translation studies of messenger RNA from the human malaria parasite Plasmodium falciparum and construction of a cDNA library. Mol Biochem Parasitol. 1984 Mar;10(3):269–285. doi: 10.1016/0166-6851(84)90026-4. [DOI] [PubMed] [Google Scholar]
- Hyde J. E., Kelly S. L., Holloway S. P., Snewin V. A., Sims P. F. A general approach to isolating Plasmodium falciparum genes using non-redundant oligonucleotides inferred from protein sequences of other organisms. Mol Biochem Parasitol. 1989 Jan 15;32(2-3):247–261. doi: 10.1016/0166-6851(89)90074-1. [DOI] [PubMed] [Google Scholar]
- Icely P. L., Gros P., Bergeron J. J., Devault A., Afar D. E., Bell J. C. TIK, a novel serine/threonine kinase, is recognized by antibodies directed against phosphotyrosine. J Biol Chem. 1991 Aug 25;266(24):16073–16077. [PubMed] [Google Scholar]
- Kappes B., Yang J., Suetterlin B. W., Rathgeb-Szabo K., Lindt M. J., Franklin R. M. A Plasmodium falciparum protein kinase with two unusually large kinase inserts. Mol Biochem Parasitol. 1995 Jun;72(1-2):163–178. doi: 10.1016/0166-6851(95)00075-c. [DOI] [PubMed] [Google Scholar]
- Knighton D. R., Zheng J. H., Ten Eyck L. F., Xuong N. H., Taylor S. S., Sowadski J. M. Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science. 1991 Jul 26;253(5018):414–420. doi: 10.1126/science.1862343. [DOI] [PubMed] [Google Scholar]
- Lambros C., Vanderberg J. P. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979 Jun;65(3):418–420. [PubMed] [Google Scholar]
- Lathrop J. T., Timko M. P. Regulation by heme of mitochondrial protein transport through a conserved amino acid motif. Science. 1993 Jan 22;259(5094):522–525. doi: 10.1126/science.8424176. [DOI] [PubMed] [Google Scholar]
- Matts R. L., Xu Z., Pal J. K., Chen J. J. Interactions of the heme-regulated eIF-2 alpha kinase with heat shock proteins in rabbit reticulocyte lysates. J Biol Chem. 1992 Sep 5;267(25):18160–18167. [PubMed] [Google Scholar]
- Mellor H., Flowers K. M., Kimball S. R., Jefferson L. S. Cloning and characterization of a cDNA encoding rat PKR, the double-stranded RNA-dependent eukaryotic initiation factor-2 kinase. Biochim Biophys Acta. 1994 Nov 22;1219(3):693–696. doi: 10.1016/0167-4781(94)90229-1. [DOI] [PubMed] [Google Scholar]
- Mellor H., Flowers K. M., Kimball S. R., Jefferson L. S. Cloning and characterization of cDNA encoding rat hemin-sensitive initiation factor-2 alpha (eIF-2 alpha) kinase. Evidence for multitissue expression. J Biol Chem. 1994 Apr 8;269(14):10201–10204. [PubMed] [Google Scholar]
- Mellor H., Proud C. G. A synthetic peptide substrate for initiation factor-2 kinases. Biochem Biophys Res Commun. 1991 Jul 31;178(2):430–437. doi: 10.1016/0006-291x(91)90125-q. [DOI] [PubMed] [Google Scholar]
- Meurs E., Chong K., Galabru J., Thomas N. S., Kerr I. M., Williams B. R., Hovanessian A. G. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell. 1990 Jul 27;62(2):379–390. doi: 10.1016/0092-8674(90)90374-n. [DOI] [PubMed] [Google Scholar]
- Narum D. L., Thomas A. W. Differential localization of full-length and processed forms of PF83/AMA-1 an apical membrane antigen of Plasmodium falciparum merozoites. Mol Biochem Parasitol. 1994 Sep;67(1):59–68. doi: 10.1016/0166-6851(94)90096-5. [DOI] [PubMed] [Google Scholar]
- Nikkilä H., Gitlin J. D., Muller-Eberhard U. Rat hemopexin. Molecular cloning, primary structural characterization, and analysis of gene expression. Biochemistry. 1991 Jan 22;30(3):823–829. doi: 10.1021/bi00217a036. [DOI] [PubMed] [Google Scholar]
- Patel R. C., Sen G. C. Identification of the double-stranded RNA-binding domain of the human interferon-inducible protein kinase. J Biol Chem. 1992 Apr 15;267(11):7671–7676. [PubMed] [Google Scholar]
- Pfeifer K., Kim K. S., Kogan S., Guarente L. Functional dissection and sequence of yeast HAP1 activator. Cell. 1989 Jan 27;56(2):291–301. doi: 10.1016/0092-8674(89)90903-3. [DOI] [PubMed] [Google Scholar]
- Proud C. G. PKR: a new name and new roles. Trends Biochem Sci. 1995 Jun;20(6):241–246. doi: 10.1016/s0968-0004(00)89025-8. [DOI] [PubMed] [Google Scholar]
- Proud C. G. Protein phosphorylation in translational control. Curr Top Cell Regul. 1992;32:243–369. doi: 10.1016/b978-0-12-152832-4.50008-2. [DOI] [PubMed] [Google Scholar]
- Proud C. G. Protein phosphorylation in translational control. Curr Top Cell Regul. 1992;32:243–369. doi: 10.1016/b978-0-12-152832-4.50008-2. [DOI] [PubMed] [Google Scholar]
- Ross-Macdonald P. B., Graeser R., Kappes B., Franklin R., Williamson D. H. Isolation and expression of a gene specifying a cdc2-like protein kinase from the human malaria parasite Plasmodium falciparum. Eur J Biochem. 1994 Mar 15;220(3):693–701. doi: 10.1111/j.1432-1033.1994.tb18670.x. [DOI] [PubMed] [Google Scholar]
- Roussou I., Thireos G., Hauge B. M. Transcriptional-translational regulatory circuit in Saccharomyces cerevisiae which involves the GCN4 transcriptional activator and the GCN2 protein kinase. Mol Cell Biol. 1988 May;8(5):2132–2139. doi: 10.1128/mcb.8.5.2132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sartorius C., Franklin R. M. Hybridization arrest of cell-free translation of the malarial dihydrofolate reductase/thymidylate synthase mRNA by anti-sense oligodeoxyribonucleotides. Nucleic Acids Res. 1991 Apr 11;19(7):1613–1618. doi: 10.1093/nar/19.7.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saul A., Battistutta D. Analysis of the sequences flanking the translational start sites of Plasmodium falciparum. Mol Biochem Parasitol. 1990 Aug;42(1):55–62. doi: 10.1016/0166-6851(90)90112-y. [DOI] [PubMed] [Google Scholar]
- Saul A., Battistutta D. Codon usage in Plasmodium falciparum. Mol Biochem Parasitol. 1988 Jan 1;27(1):35–42. doi: 10.1016/0166-6851(88)90022-9. [DOI] [PubMed] [Google Scholar]
- Shaklai N., Shviro Y., Rabizadeh E., Kirschner-Zilber I. Accumulation and drainage of hemin in the red cell membrane. Biochim Biophys Acta. 1985 Dec 5;821(2):355–366. doi: 10.1016/0005-2736(85)90106-3. [DOI] [PubMed] [Google Scholar]
- Sieg K., Kun J., Pohl I., Scherf A., Müller-Hill B. A versatile phage lambda expression vector system for cloning in Escherichia coli. Gene. 1989 Feb 20;75(2):261–270. doi: 10.1016/0378-1119(89)90272-2. [DOI] [PubMed] [Google Scholar]
- Suetterlin B. W., Kappes B., Franklin R. M. Localization and stage specific phosphorylation of Plasmodium falciparum phosphoproteins during the intraerythrocytic cycle. Mol Biochem Parasitol. 1991 May;46(1):113–122. doi: 10.1016/0166-6851(91)90205-k. [DOI] [PubMed] [Google Scholar]
- Surolia N., Padmanaban G. Chloroquine inhibits heme-dependent protein synthesis in Plasmodium falciparum. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4786–4790. doi: 10.1073/pnas.88.11.4786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomis D. C., Doohan J. P., Samuel C. E. Mechanism of interferon action: cDNA structure, expression, and regulation of the interferon-induced, RNA-dependent P1/eIF-2 alpha protein kinase from human cells. Virology. 1992 May;188(1):33–46. doi: 10.1016/0042-6822(92)90732-5. [DOI] [PubMed] [Google Scholar]
- Triggs-Raine B. L., Doble B. W., Mulvey M. R., Sorby P. A., Loewen P. C. Nucleotide sequence of katG, encoding catalase HPI of Escherichia coli. J Bacteriol. 1988 Sep;170(9):4415–4419. doi: 10.1128/jb.170.9.4415-4419.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wek R. C., Jackson B. M., Hinnebusch A. G. Juxtaposition of domains homologous to protein kinases and histidyl-tRNA synthetases in GCN2 protein suggests a mechanism for coupling GCN4 expression to amino acid availability. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4579–4583. doi: 10.1073/pnas.86.12.4579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wek R. C. eIF-2 kinases: regulators of general and gene-specific translation initiation. Trends Biochem Sci. 1994 Nov;19(11):491–496. doi: 10.1016/0968-0004(94)90136-8. [DOI] [PubMed] [Google Scholar]
- Zhang L., Guarente L. Heme binds to a short sequence that serves a regulatory function in diverse proteins. EMBO J. 1995 Jan 16;14(2):313–320. doi: 10.1002/j.1460-2075.1995.tb07005.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao Y., Kappes B., Yang J., Franklin R. M. Molecular cloning, stage-specific expression and cellular distribution of a putative protein kinase from Plasmodium falciparum. Eur J Biochem. 1992 Jul 1;207(1):305–313. doi: 10.1111/j.1432-1033.1992.tb17051.x. [DOI] [PubMed] [Google Scholar]
